Advertisement

Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm

  • Faiez Gassara
  • Ridha HambliEmail author
  • Tarak Bouraoui
  • Foued El Halouani
  • Damien Soulat
ORIGINAL ARTICLE

Abstract

Sheet metal L-bending processes are widely used for mass production. The design of L-bending processes is connected with time-consuming and costly experiments. Therefore, the finite element simulation of the process could be a helpful tool for the designer and quality assurance of the products. In L-bending process, springback is an important phenomenon, and its accurate prediction is important to control the final shape of the workpiece when the punch is removed. In this study, an optimization algorithm using Gauss–Newton method was developed by coupling the Abaqus/standard code and Python script which is an object-oriented language. For a given bending process problem, the proposed algorithm allows for the optimization of a set of material and/or process factors in order to minimize the workpiece springback. Python scripts allow the direct parameterization of the design variables to be optimized in the finite element input file, and hence an easy use of the procedure within the framework of industrial application. An example is presented in order to optimize three process parameters, namely, die corner radius, punch–die clearance, and the blank holder force. The results demonstrate the reliability of the proposed approach and the fast convergence of the algorithm.

Keywords

L-bending Optimization Springback FEM Script 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang ZT, Lee D (1995) Development of a new model for plane strain bending and springback analysis. J Mater Eng Perform 3:291–300. doi: 10.1007/BF02649066 CrossRefGoogle Scholar
  2. 2.
    Makinouchi A, Nakamichi E, Onate E, Wagoner RH (1995) Prediction of spring-back and side-wall curl in 2-D draw bending. J Mater Process Technol 20:361–374Google Scholar
  3. 3.
    Date PP, Narashima K, Maiti SK, Singh UP (1999) On the prediction of spring back in vee bending of metallic sheets under plane strain condition. International Conference on Sheet Metal, Earlangen, Germany, pp 447–456Google Scholar
  4. 4.
    Frank R, Kees D (1994) The influence of the clearance on the springback with bending, International Conference on Sheet Metal. University of Ulster, North Ireland, pp 335–342Google Scholar
  5. 5.
    Wenner ML (1983) On the work hardening and springback in plane strain draw forming. J Appl Metalwork Vol. 2:277–287. doi: 10.1007/BF02833912 CrossRefGoogle Scholar
  6. 6.
    Tekiner Z (2004) An experimental study on the examination of springback of sheet metals with several thicknesses and properties in bending dies. J Mater Process Technol 145:109–117. doi: 10.1016/j.jmatprotec.2003.07.005 CrossRefGoogle Scholar
  7. 7.
    Hill R (1990) Constitutive modeling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38:405–417. doi: 10.1016/0022-5096(90)90006-P zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kalpakjian S (1991) Manufacturing process for engineering materials, 2nd edn. Addision-Wesley, USAGoogle Scholar
  9. 9.
    Marron G, Bouchêlier C (1995) Le pliage des aciers HLE prévision et maîtrise du retour élastique. Revue de la métallurgie, pp 121–130Google Scholar
  10. 10.
    Mkaddem A, Saidane D, Onate E, Wagoner RH (2007) Experimental approach and RSM procedure on the examination springback in wiping-die bending process. J Mater Process Technol 189:325–333. doi: 10.1016/j.jmatprotec.2007.02.004 CrossRefGoogle Scholar
  11. 11.
    Ogawa H (2001) A study of bottoming bend and coining bend of sheet metal. Proceedings of the 9th International Conference on Sheet Metal, pp 247–254Google Scholar
  12. 12.
    Serruys W (2001) Adaptative bending. Proceedings of the 9th International Conference on Sheet Metal, pp 503–512Google Scholar
  13. 13.
    Anokye-Siribor K, Singh UP, Agahi P (2000) Determination of spring back in air bending using parabolic model. Proceedings of the 8th International Conference on Sheet Metal, pp 529–540Google Scholar
  14. 14.
    Livatyali H, Altan T (2001) Prediction and elimination of springback in straight flanging using computer aided design methods. J Mater Process Technol 123:348–354Google Scholar
  15. 15.
    Han SS, Park KC (1999) An investigation of the factors influencing springback by empirical and simulative techniques. International Conference of Numisheet, Besancon, France, pp 53–57Google Scholar
  16. 16.
    Panthi SK, Ramakrishnan N, Pathak KK, Chouhan JS (2007) An analysis of springback in sheet metal bending using finite element method (FEM). J Mater Process Technol 186:120–124. doi: 10.1016/j.jmatprotec.2006.12.026 CrossRefGoogle Scholar
  17. 17.
    Cho JR, Moon SJ, Moon YH, Kang SS (2003) Finite element investigation on springback characteristics in sheet metal U-bending process. J Mater Process Technol 141:109–116. doi: 10.1016/S0924-0136(03)00163-8 CrossRefGoogle Scholar
  18. 18.
    Li X, Yang Y, Wang Y, Bao J, Li S (2002) Effect of the material-hardening mode on the springback simulation accuracy of V-free bending. J Mater Process Technol 123:209–211Google Scholar
  19. 19.
    Math M, Grizelj B (2001) Finite element approach in the plate bending process. J Mater Process Technol 125–126:778–784. doi: 10.1016/S0924-0136(02)00391-6 Google Scholar
  20. 20.
    Choudhry S, Lee JK (1994) Dynamic plane-strain finite element simulation of industrial sheet-metal forming processes. Int J Mech Sci 36:189–207. doi: 10.1016/0020-7403(94)90069-8 zbMATHCrossRefGoogle Scholar
  21. 21.
    Papeleux L, Ponthot JP (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125–126:785–791. doi: 10.1016/S0924-0136(02)00393-X CrossRefGoogle Scholar
  22. 22.
    Chou IN, Hung C (1999) Finite element analysis and optimization on springback reduction. Int J Mach Tools Manuf 39:517–536. doi: 10.1016/S0890-6955(98)00031-5 CrossRefGoogle Scholar
  23. 23.
    Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New YorkzbMATHCrossRefGoogle Scholar
  24. 24.
    Fletcher R (2000) Practical methods of optimization. Wiley, New YorkGoogle Scholar
  25. 25.
    Renner G, Ekárt A (2003) Genetic algorithms in computer aided design. Computer-Aided Des 35:709–726. doi: 10.1016/S0010-4485(03)00003-4 CrossRefGoogle Scholar
  26. 26.
    Inamdar MV, Date PP, Desai UB (2000) Studies on the prediction of springback in air vee bending of metallic sheets using an artificial neural network. J Mater Process Technol 108:45–54. doi: 10.1016/S0924-0136(00)00588-4 CrossRefGoogle Scholar
  27. 27.
    Lepadatu D, Hambli H, Kobi A, Barreau A (2005) Optimisation of springback in bending processes using FEM simulation and response surface method. Int J Adv Manuf Technol 27:40–47. doi: 10.1007/s00170-004-2146-z CrossRefGoogle Scholar
  28. 28.
    Hibbitt, Krlsson and Sorensen, Inc. (2006) ABAQUS manualGoogle Scholar
  29. 29.
    Samuel M (2000) Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals. J Mater Process Technol 105:382–393. doi: 10.1016/S0924-0136(00)00587-2 CrossRefGoogle Scholar
  30. 30.
    Kleinermann JP, Ponthot JP (2000) Parameter identification using inverse problems methodology in metal forming simulation. In: Topping BHV (ed) Finite element techniques and development. Proceedings of the Second International Conference on Engineering Computational Technology. Leuven, Belgium, 6–8 Sept, pp 279–284Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Faiez Gassara
    • 1
  • Ridha Hambli
    • 2
    Email author
  • Tarak Bouraoui
    • 1
    • 3
  • Foued El Halouani
    • 1
  • Damien Soulat
    • 2
  1. 1.Laboratoire des Systèmes ÉlectroMécaniquesENISSfaxTunisia
  2. 2.Polytech’ Orléans–Institut PrismeMMHOrléans Cedex 2France
  3. 3.Institut Prépa. aux Études d’Ingénieurs de MonastirMonastirTunisia

Personalised recommendations