Skip to main content
Log in

Quantitative models for supply chain planning under uncertainty: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Managing uncertainty is a main challenge within supply chain management. Therefore, it is expected that those supply chain planning methods which do not include uncertainty obtain inferior results if compared with models that formalise it implicitly. This article presents a review of the literature related to supply chain planning methods under uncertainty. The main objective is to provide the reader with a starting point for modelling supply chain under uncertainty applying quantitative approaches. We have defined a taxonomy to classify models from 103 bibliographic references dated 1988–2007. Finally, some conclusions about the works analysed have been drawn and future lines of research have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Min H, Zhou GG (2002) Supply chain modeling: past, present and future. Comput Ind Eng 43(1–2):231–249

    Google Scholar 

  2. Lambert DM, Cooper MC (2000) Issues in supply chain management. Ind Mark Manage 29(1):65–83

    Google Scholar 

  3. Guillen G, Mele E, Bagajewicz MJ, Espuna A, Puigjaner L (2005) Multiobjective supply chain design under uncertainty. Chem Eng Sci 60(6):1535–1553

    Google Scholar 

  4. Gupta A, Maranas CD (2003) Managing demand uncertainty in supply chain planning. Comput Chem Eng 27(8–9):1219–1227

    Google Scholar 

  5. Bhatnagar R, Sohal AS (2005) Supply chain competitiveness: measuring the impact of location factors, uncertainty and manufacturing practices. Technovation 25(5):443–456

    Google Scholar 

  6. Galbraith J (1973) Designing complex organizations. Addison-Wesley, Massachussets

    Google Scholar 

  7. Davis T (1993) Effective supply chain management. Sloan Manage Rev 34(4):35–46

    Google Scholar 

  8. Minegishi S, Thiel D (2000) System dynamics modeling and simulation of a particular food supply chain. Simul Pract Theory 8(5):321–339

    MATH  Google Scholar 

  9. Jung JY, Blau G, Pekny JF, Reklaitis GV, Eversdyk D (2004) A simulation based optimization approach to supply chain management under demand uncertainty. Comput Chem Eng 28(10):2087–2106

    Google Scholar 

  10. Giannoccaro I, Pontrandolfo P (2001) Models for supply chain management: a taxonomy. In: Proceedings of the Production and Operations Management 2001. Conference POMS mastery in the new millennium, Orlando, Florida, USA

  11. Aprile D, Garavelli AC, Giannoccaro I (2005) Operations planning and flexibility in a supply chain. Prod Plan Control 16(1):21–31

    Google Scholar 

  12. Giannoccaro I, Pontrandolfo P, Scozzi B (2003) A fuzzy echelon approach for inventory management in supply chains. Eur J Oper Res 149(1):185–196

    MATH  MathSciNet  Google Scholar 

  13. Arns M, Fischer M, Kemper P, Tepper C (2002) Supply chain modelling and its analytical evaluation. J Oper Res Soc 53(8):885–894

    MATH  Google Scholar 

  14. Mason-Jones R, Towill DR (1998) Shrinking the supply chain uncertainty circle. IOM Control 24:17–22

    Google Scholar 

  15. Childerhouse P, Towill DR (2002) Analysis of the factors affecting real-world value stream performance. Int J Prod Res 40(15):3499–3518

    Google Scholar 

  16. Subrahmanyam S, Peknyt JF, Reklaitis GV (1994) Design of batch chemical-plants under market uncertainty. Ind Eng Chem Res 33(11):2688–2701

    Google Scholar 

  17. Ho CF, Chi YP, Tai YM (2005) A structural approach to measuring uncertainty in supply chains. Int J Electron Commer 9(3):91–114

    Google Scholar 

  18. Lee HL, Billington C (1993) Material management in decentralized supply chains. Oper Res 41(5):835–847

    MATH  Google Scholar 

  19. Wang JT, Shu YF (2005) Fuzzy decision modeling for supply chain management. Fuzzy Sets Syst 150(1):107–127

    MATH  MathSciNet  Google Scholar 

  20. Yang B, Burns ND, Backhouse CJ (2004) Management of uncertainty through postponement. Int J Prod Res 42(6):1049–1064

    MATH  Google Scholar 

  21. Alonso-Ayuso A, Escudero LF, Garin A, Ortuno MT, Perez G (2003) An approach for strategic supply chain planning under uncertainty based on stochastic 0–1 programming. J Glob Optim 26(1):97–124

    MATH  MathSciNet  Google Scholar 

  22. Bilgen B, Ozkarahan I (2004) Strategic tactical and operational production–distribution models: a review. Int J Technol Manag 28(2):151–171

    Google Scholar 

  23. Chan FTS, Chan HK (2005) The future trend on system-wide modelling in supply chain studies. Int J Adv Manuf Technol 25(7–8):820–832

    Google Scholar 

  24. Stevens GC (1989) Integrating the supply chain. Int J Phys Distrib Mater Manag 19(8):3–8

    Google Scholar 

  25. Chopra S, Meindl P (2001) Supply chain management: strategy, planning and operation. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  26. Fox MS, Barbuceanu M, Teigen R (2000) Agent-oriented supply-chain management. Int J Flex Manuf Syst 12(2–3):165–188

    Google Scholar 

  27. Ganeshan R, Jack E, Magazine MJ, Stephens P (1999) A taxonomic review of supply chain management research. In: Tayur S, Ganeshan R, Magazine M (eds) Quantitative models for supply chain management. Kluwer Academic, Boston, MA, pp 840–879

    Google Scholar 

  28. Jang YJ, Jang SY, Chang BM, Park J (2002) A combined model of network design and production/distribution planning for a supply network. Comput Ind Eng 43(1–2):263–281

    Google Scholar 

  29. Meyr H, Wagner M, Rohde J (2002) Structure of advanced planning systems. In: Stadtler H, Kilger C (eds) Supply chain management and advanced planning—concepts, models software and case studies. Springer, Berlin, pp 99–104

    Google Scholar 

  30. Miranda PA, Garrido RA (2004) Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand. Transp Res Part E Logist Trans Rev 40(3):183–207

    Google Scholar 

  31. Narasimhan R, Mahapatra S (2004) Decision models in global supply chain management. Ind Mark Manage 33(1):21–27

    Google Scholar 

  32. Sabri EH, Beamon BM (2000) A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega Int J Manag Sci 28(5):581–598

    Google Scholar 

  33. Shah N (2005) Process industry supply chains: advances and challenges. Comput Chem Eng 29(6):1225–1235

    Google Scholar 

  34. Thomas DJ, Griffin PM (1996) Coordinated supply chain management. Eur J Oper Res 94(1):1–15

    MATH  Google Scholar 

  35. Vidal CJ, Goetschalckx M (1997) Strategic production–distribution models: a critical review with emphasis on global supply chain models. Eur J Oper Res 98(1):1–18

    MATH  Google Scholar 

  36. von Lanzenauer CH, Pilz-Glombik K (2002) Coordinating supply chain decisions: an optimization model. Or Spectrum 24(1):59–78

    MATH  Google Scholar 

  37. Beamon BM (1998) Supply chain design and analysis: models and methods. Int J Prod Econ 55(3):281–294

    Google Scholar 

  38. Cohen MA, Mallik S (1997) Global supply chains: research and applications. Prod Oper Manag 6(3):193–210

    Google Scholar 

  39. Goetschalckx M, Vidal CJ, Dogan K (2002) Modeling and design of global logistics systems: a review of integrated strategic and tactical models and design algorithms. Eur J Oper Res 143(1):1–18

    MATH  Google Scholar 

  40. Huang GQ, Lau JSK, Mak KL (2003) The impacts of sharing production information on supply chain dynamics: a review of the literature. Int J Prod Res 41(7):1483–1517

    Google Scholar 

  41. Hung WY, Samsatli NJ, Shah N (2006) Object-oriented dynamic supply-chain modelling incorporated with production scheduling. Eur J Oper Res 169(3):1064–1076

    MATH  Google Scholar 

  42. Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28(6–7):971–983

    Google Scholar 

  43. Dejonckheere J, Disney SM, Lambrecht MR, Towill DR (2003) Measuring and avoiding the bullwhip effect: a control theoretic approach. Eur J Oper Res 147(3):567–590

    MATH  Google Scholar 

  44. Disney SM, Naim MM, Potter A (2004) Assesing the impact of e-business on supply chain dynamics. Int J Prod Econ 89(2):109–118

    Google Scholar 

  45. Gaalman G, Disney SM (2006) State space investigation of the bullwhip problem with ARMA(1,1) demand processes. Int J Prod Econ 104(2):327–339

    Google Scholar 

  46. Stadtler H (2005) Supply chain management and advanced planning—basics, overview and challenges. Eur J Oper Res 163(3):575–588

    MATH  Google Scholar 

  47. Shanthikumar JG, Sargent RG (1983) A unifying view of hybrid simulation analytic models and modeling. Oper Res 31(6):1030–1052

    MATH  Google Scholar 

  48. Gnoni MG, Iavagnilio R, Mossa G, Mummolo G, Di Leva A (2003) Production planning of a multi-site manufacturing system by hybrid modelling: a case study from the automotive industry. Int J Prod Econ 85(2):251–262

    Google Scholar 

  49. Peidro D (2007) Models for centralized supply chain planning under uncertainty. Application to an automobile supply chain. Thesis, Polytechnic University of Valencia

  50. Cohen MA, Lee HL (1988) Strategic analysis of integrated production–distribution systems—models and methods. Oper Res 36(2):216–228

    Google Scholar 

  51. Svoronos A, Zipkin P (1991) Evaluation of one-for-one replenishment policies for multiechelon inventory systems. Manage Sci 37(1):68–83

    Google Scholar 

  52. Lee HL, Billington C, Carter B, Edmondson HE (1993) Hewlett-Packard gains control of inventory and service through design for localization. Interfaces 23(4):1–11

    Article  Google Scholar 

  53. Pyke DF, Cohen MA (1993) Performance-characteristics of stochastic integrated production–distribution systems. Eur J Oper Res 68(1):23–48

    MATH  Google Scholar 

  54. Pyke DF, Cohen MA (1994) Multiproduct integrated production–distribution-systems. Eur J Oper Res 74(1):18–49

    MATH  Google Scholar 

  55. Altiok T, Ranjan R (1995) Multistage, pull-type production inventory systems. IIE Trans 27(2):190–200

    Google Scholar 

  56. Blanchini F, Rinaldi F, Ukovich W (1997) A network design problem for a distribution system with uncertain demands. SIAM J Optim 7(2):560–578

    MATH  MathSciNet  Google Scholar 

  57. Lee HL, Padmanabhan V, Whang SJ (1997) Information distortion in a supply chain: the bullwhip effect. Manage Sci 43(4):546–558

    MATH  Google Scholar 

  58. McDonald CM, Karimi IA (1997) Planning and scheduling of parallel semicontinuous processes. 1. Production planning. Ind Eng Chem Res 36(7):2691–2700

    Google Scholar 

  59. Escudero LF, Galindo E, Garcia G, Gomez E, Sabau V (1999) Schumann, a modeling framework for supply chain management under uncertainty. Eur J Oper Res 119(1):14–34

    MATH  Google Scholar 

  60. Garg A (1999) An application of designing products and processes for supply chain management. IIE Trans 31(5):417–429

    MathSciNet  Google Scholar 

  61. Applequist GE, Pekny JF, Reklaitis GV (2000) Risk and uncertainty in managing chemical manufacturing supply chains. Comput Chem Eng 24(9–10):2211–2222

    Google Scholar 

  62. Gupta A, Maranas CD (2000) A two-stage modeling arid solution framework for multisite midterm planning under demand uncertainty. Ind Eng Chem Res 39(10):3799–3813

    Google Scholar 

  63. Gupta A, Maranas CD, McDonald CM (2000) Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management. Comput Chem Eng 24(12):2613–2621

    Google Scholar 

  64. Koutsoukis NS, Dominguez-Ballesteros B, Lucas CA, Mitra G (2000) A prototype decision support system for strategic planning under uncertainty. Int J Phys Distrib Logist Manag 30(7):640–661

    Google Scholar 

  65. Yu CS, Li HL (2000) A robust optimization model for stochastic logistic problems. Int J Prod Econ 64(1–3):385–397

    Google Scholar 

  66. Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43(2):264–281

    MATH  MathSciNet  Google Scholar 

  67. Mulvey JM, Ruszczynski AJ (1995) A new scenario decomposition method for large-scale stochastic optimization. Oper Res 43(3):477–490

    MATH  MathSciNet  Google Scholar 

  68. Chan YP, Carter WB, Burnes MD (2001) A multiple-depot, multiple-vehicle, location-routing problem with stochastically processed demands. Comput Oper Res 28(8):803–826

    MATH  MathSciNet  Google Scholar 

  69. Lario FC, Rodriguez A, García JP, Escudero LF (2001) Análisis y definición de escenarios en programación estocástica para la gestión de la cadena de suministros en el sector del automóvil. IV Congreso de Ingeniería de Organización, Sevilla

  70. Schumann Consortium (1998) Supply chain uncertainty management network optimization. ESPRIT PROGRAMME. Full Proposal 26267

  71. Lucas C, MirHassani SA, Mitra G, Poojari CA (2001) An application of Lagrangian relaxation to a capacity planning problem under uncertainty. J Oper Res Soc 52(11):1256–1266

    MATH  Google Scholar 

  72. Tsiakis P, Shah N, Pantelides CC (2001) Design of multi-echelon supply chain networks under demand uncertainty. Ind Eng Chem Res 40(16):3585–3604

    Google Scholar 

  73. Agrawal N, Smith SA, Tsay AA (2002) Multi-vendor sourcing in a retail supply chain. Prod Oper Manag 11(2):157–182

    Google Scholar 

  74. Lababidi HMS, Ahmed MA, Alatiqi IM, Al Enzi AF (2004) Optimizing the supply chain of a petrochemical company under uncertain operating and economic conditions. Ind Eng Chem Res 43(1):63–73

    Google Scholar 

  75. Levis AA, Papageorgiou LG (2004) A hierarchical solution approach for multi-site capacity planning under uncertainty in the pharmaceutical industry. Comput Chem Eng 28(5):707–725

    Google Scholar 

  76. Ryu JH, Dua V, Pistikopoulos EN (2004) A bilevel programming framework for enterprise-wide process networks under uncertainty. Comput Chem Eng 28(6–7):1121–1129

    Google Scholar 

  77. Aghezzaf E (2005) Capacity planning and warehouse location in supply chains with uncertain demands. J Oper Res Soc 56(4):453–462

    MATH  Google Scholar 

  78. Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Eur J Oper Res 167(1):96–115

    MATH  MathSciNet  Google Scholar 

  79. Sodhi MS (2005) Managing demand risk in tactical supply chain planning for a global consumer electronics company. Prod Oper Manag 14(1):69–79

    Google Scholar 

  80. Spitter JM, de Kok AG, Dellaert NP (2005) Timing production in LP models in a rolling schedule. Int J Prod Econ 93–94:319–329

    Google Scholar 

  81. Baker KR (1977) An experimental study of effectiveness of rolling schedules in production planning. Decis Sci 8:19–27

    Google Scholar 

  82. Guillen G, Mele FD, Espuna A, Puigjaner L (2006) Addressing the design of chemical supply chains under demand uncertainty. Ind Eng Chem Res 45(22):7566–7581

    Google Scholar 

  83. Leung SCH, Wu Y, Lai KK (2006) A stochastic programming approach for multi-site aggregate production planning. J Oper Res Soc 57(2):123–132

    MATH  Google Scholar 

  84. Leung SCH, Tsang SOS, Ng WL, Wu Y (2007) A robust optimization model for multi-site production planning problem in an uncertain environment. Eur J Oper Res 181(1):224–238

    MATH  Google Scholar 

  85. Snyder LV, Daskin MS, Teo CP (2007) The stochastic location model with risk pooling. Eur J Oper Res 179(3):1221–1238

    MATH  Google Scholar 

  86. Petrovic D, Roy R, Petrovic R (1998) Modelling and simulation of a supply chain in an uncertain environment. Eur J Oper Res 109(2):299–309

    MATH  Google Scholar 

  87. Petrovic D, Roy R, Petrovic R (1999) Supply chain modelling using fuzzy sets. Int J Prod Econ 59(1–3):443–453

    Google Scholar 

  88. Petrovic D (2001) Simulation of supply chain behaviour and performance in an uncertain environment. Int J Prod Econ 71(1–3):429–438

    Google Scholar 

  89. Shih LH (1999) Cement transportation planning via fuzzy linear programming. Int J Prod Econ 58(3):277–287

    Google Scholar 

  90. Zimmermann HJ (1976) Description and optimization of fuzzy systems. Int J Gen Syst 2(4):209–215

    Google Scholar 

  91. Chanas S (1983) The use of parametric programming in fuzzy linear-programming. Fuzzy Sets Syst 11(3):243–251

    MATH  Google Scholar 

  92. Julien B (1994) An extension to possibilistic linear-programming. Fuzzy Sets Syst 64(2):195–206

    MathSciNet  Google Scholar 

  93. Hu QH, Kumar A, Shuang Z (2001) A bidding decision model in multiagent supply chain planning. Int J Prod Res 39(15):3291–3301

    Google Scholar 

  94. Sakawa M, Nishizaki I, Uemura Y (2001) Fuzzy programming and profit and cost allocation for a production and transportation problem. Eur J Oper Res 131(1):1–15

    MATH  MathSciNet  Google Scholar 

  95. Chen Y, Peng Y (2002) An extended Bayesian belief network model of multi-agent systems for supply chain management. In: Innovative Concepts for Agent-Based Systems, 2564. Springer, pp 335–346

  96. Neapolitan RE (1989) Probabilistic reasoning in expert system: theory and algorithms. Wiley, New York

    Google Scholar 

  97. Garcia-Flores R, Wang XZ (2002) A multi-agent system for chemical supply chain simulation and management support. Or Spectrum 24(3):343–370

    MATH  MathSciNet  Google Scholar 

  98. Giannoccaro I, Pontrandolfo P (2002) Inventory management in supply chains: a reinforcement learning approach. Int J Prod Econ 78(2):153–161

    Google Scholar 

  99. Bertsekas D, Tsitsiklis J (1996) Neuro-dynamic programming. Athena Scientific, Belmont, MA

    MATH  Google Scholar 

  100. Sutton RL, Barto AG (1998) Reinforcement leaning—an introduction. MIT, Cambridge, MA

    Google Scholar 

  101. Ahn HJ, Park SJ (2003) Modeling of a multi-agent system for coordination of supply chains with complexity and uncertainty. In: Intelligent Agents and Multi-Agent Systems 2891. Springer, Germany, pp 13–24

  102. Chen CL, Wang BW, Lee WC (2003) Multiobjective optimization for a multienterprise supply chain network. Ind Eng Chem Res 42(9):1879–1889

    Google Scholar 

  103. Chen CL, Wang BW, Lee WC (2003) The optimal profit distribution problem in a multi-echelon supply chain network: a fuzzy optimization approach. In: Knowledge-Based Intelligent Information and Engineering Systems, Pt 1, Proceedings, 2773. Springer, pp 1289–1295

  104. Li RJ, Lee WC (1993) Fuzzy multi objective programming and compromise programming with pareto optimum. Fuzzy Sets Syst 53(3):275–288

    MATH  MathSciNet  Google Scholar 

  105. Chen CL, Lee WC (2004) Optimization of multi-echelon supply chain networks with uncertain sales prices. J Chem Eng Jpn 37(7):822–834

    MathSciNet  Google Scholar 

  106. Chen CL, Lee WC (2004) Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Comput Chem Eng 28(6–7):1131–1144

    Google Scholar 

  107. Clark TH, Scarf H (1960) Optimal polices for a multi-echelon inventory problem. Manage Sci 6:475–490

    Google Scholar 

  108. Lin CWR, Chen HYS (2003) Dynamic allocation of uncertain supply for the perishable commodity supply chain. Int J Prod Res 41(13):3119–3138

    MATH  Google Scholar 

  109. Chan FTS, Chan HK (2004) A new model for manufacturing supply chain networks: a multiagent approach. Proc Inst Mech Eng B J Eng Manuf 218(4):443–454

    Google Scholar 

  110. Smith RG (1980) The contract net protocol—high-level communication and control in a distributed problem solver. IEEE Trans Comput 29(12):1104–1113

    Google Scholar 

  111. Deshpande U, Gupta A, Basu A (2004) Task assignment with imprecise information for real-time operation in a supply chain. Applied Soft Computing 5(1):101–117

    Google Scholar 

  112. Kumar M, Vrat P, Shankar R (2004) A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput Ind Eng 46(1):69–85

    Google Scholar 

  113. Kumar M, Vrat P, Shankar R (2006) A fuzzy programming approach for vendor selection problem in a supply chain. Int J Prod Econ 101(2):273–285

    Google Scholar 

  114. Zimmermann HJ (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1:45–55

    MATH  Google Scholar 

  115. Liu ST, Kao C (2004) Solving fuzzy transportation problems based on extension principle. Eur J Oper Res 153(3):661–674

    MATH  MathSciNet  Google Scholar 

  116. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    MATH  MathSciNet  Google Scholar 

  117. Truong TH, Azadivar F (2005) Optimal design methodologies for configuration of supply chains. Int J Prod Res 43(11):2217–2236

    Google Scholar 

  118. Amid A, Ghodsypour SH, O’Brien C (2006) Fuzzy multiobjective linear model for supplier selection in a supply chain. Int J Prod Econ 104(2):394–407

    Google Scholar 

  119. Kumar V, Prakash, Tiwari MK, Chan FTS (2006) Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach. Int J Prod Res 44(11):2245–2263

    Google Scholar 

  120. Lim SJ, Jeong SJ, Kim KS, Park MW (2006) Hybrid approach to distribution planning reflecting a stochastic supply chain. Int J Adv Manuf Technol 28(5–6):618–625

    Google Scholar 

  121. Xie Y, Petrovic D, Burnham K (2006) A heuristic procedure for the two-level control of serial supply chains under fuzzy customer demand. Int J Prod Econ 102(1):37–50

    Google Scholar 

  122. Lieckens K, Vandaele N (2007) Reverse logistics network design with stochastic lead times. Comput Oper Res 34(2):395–416

    MATH  Google Scholar 

  123. Selim H, Araz C, Ozkarahan I (2007) Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp Res Part E Logist Trans Rev 44:396–419

    Google Scholar 

  124. Towill DR (1991) Supply chain dynamics. Int J Comput Integr Manuf 4(4):197–208

    Google Scholar 

  125. Towill DR, Naim M, Wikner J (1992) Industrial dynamics simulations models in the design of supply chains. Int J Phys Distrib Logist Manag 22(5):3–13

    Google Scholar 

  126. Wikner J, Towill DR, Naim M (1991) Smoothing supply chain dynamics. Int J Prod Econ 22(3):231–248

    Google Scholar 

  127. Towill DR, Delvecchio A (1994) The application of filter theory to the study of supply chain dynamics. Prod Plan Control 5(1):82–96

    Google Scholar 

  128. Sharp JA (1976) The role of forecasts in system dynamics. Dynamica 2(2):50–61

    MathSciNet  Google Scholar 

  129. Hung YF, Chang CB (1999) Determining safety stocks for production planning in uncertain manufacturing. Int J Prod Econ 58(2):199–208

    Google Scholar 

  130. Helo PT (2000) Dynamic modelling of surge effect and capacity limitation in supply chains. Int J Prod Res 38(17):4521–4533

    Google Scholar 

  131. Forrester JW (1958) Industrial dynamics—a major breakthrough for decision makers. Harvard Bus Rev 36(4):37–66

    Google Scholar 

  132. Burbidge JL (1961) The new approach to production. Prod Eng 14:769–784

    Article  Google Scholar 

  133. van der Vorst JGAJ, Beulens AJM, van Beek P (2000) Modelling and simulating multi-echelon food systems. Eur J Oper Res 122(2):354–366

    MATH  Google Scholar 

  134. Beamon BM, Chen VCP (2001) Performance analysis of conjoined supply chains. Int J Prod Res 39(14):3195–3218

    MATH  Google Scholar 

  135. Gjerdrum J (2001) Problems in the optimum planning of multi-enterprise supply chains. Ph.D. thesis, Imperial College of Science, Technology and Medicine

  136. Jansen DR, van Weert A, Beulens AJM, Huirne RBM (2001) Simulation model of multi-compartment distribution in the catering supply chain. Eur J Oper Res 133(1):210–224

    MATH  Google Scholar 

  137. Persson F, Olhager J (2002) Performance simulation of supply chain designs. Int J Prod Econ 77(3):231–245

    Google Scholar 

  138. Zhao XD, Xie JX, Leung J (2002) The impact of forecasting model selection on the value of information sharing in a supply chain. Eur J Oper Res 142(2):321–344

    MATH  Google Scholar 

  139. Zhao XD, Xie JX (2002) Forecasting errors and the value of information sharing in a supply chain. Int J Prod Res 40(2):311–335

    MATH  MathSciNet  Google Scholar 

  140. Hung WY, Kucherenko S, Samsatli NJ, Shah N (2004) A flexible and generic approach to dynamic modelling of supply chains. J Oper Res Soc 55(8):801–813

    MATH  Google Scholar 

  141. Nair A, Closs DJ (2006) An examination of the impact of coordinating supply chain policies and price markdowns on short lifecycle product retail performance. Int J Prod Econ 102(2):379–392

    Google Scholar 

  142. Suwanruji P, Enns ST (2006) Evaluating the effects of capacity constraints and demand patterns on supply chain replenishment strategies. Int J Prod Res 44(21):4607–4629

    MATH  Google Scholar 

  143. Chiang WK, Feng Y (2007) The value of information sharing in the presence of supply uncertainty and demand volatility. Int J Prod Res 45(6):1429–1447

    MATH  Google Scholar 

  144. Bookbinder JH, Mcauley PT, Schulte J (1989) Inventory and transportation-planning in the distribution of fine papers. J Oper Res Soc 40(2):155–166

    Google Scholar 

  145. Newhart DD, Stott KL, Vasko FJ (1993) Consolidating product sizes to minimize inventory levels for a multistage production and distribution-system. J Oper Res Soc 44(7):637–644

    Google Scholar 

  146. Bose S, Pekny JF (2000) A model predictive framework for planning and scheduling problems: a case study of consumer goods supply chain. Comput Chem Eng 24(2–7):329–335

    Google Scholar 

  147. Camacho EF, Bordons C (2004) Control Predictivo: Pasado, Presente y Futuro. Rev Iberam Autom Inform Ind 1(3):5–28

    Google Scholar 

  148. Lee YH, Kim SH (2000) Optimal production–distribution planning in supply chain management using a hybrid simulation-analytic approach. In: Winter Simulation Conference, Proceedings of the 32nd conference on Winter simulation, pp 1252–1259

  149. Lee YH, Kim SH (2002) Production–distribution planning in supply chain considering capacity constraints. Comput Ind Eng 43(1–2):169–190

    Google Scholar 

  150. Lee YH, Kim SH, Moon C (2002) Production–distribution planning in supply chain using a hybrid approach. Prod Plan Control 13(1):35–46

    Google Scholar 

  151. Karabakal N, Gunal A, Ritchie W (2000) Supply-chain analysis at Volkswagen of America. Interfaces 30(4):46–55

    Google Scholar 

  152. Braun MW, Rivera DE, Flores ME, Carlyle WM, Kempf KG (2003) A Model predictive control framework for robust management of multi-product, multi-echelon demand networks. Annu Rev Control 27(2):229–245

    Google Scholar 

  153. Seferfis P, Giannelos NF (2004) A two-layered optimisation-based control strategy for multi-echelon supply chain networks. Comput Chem Eng 28(5):799–809

    Google Scholar 

  154. Choi J, Realff MJ, Lee JH (2006) Approximate dynamic programming: application to process supply chain management. AIChE J 52(7):2473–2485

    Google Scholar 

  155. Lim SJ, Jeong SJ, Kim KS, Park MW (2006) A simulation approach for production–distribution planning with consideration given to replenishment policies. Int J Adv Manuf Technol 27(5):593–603

    Google Scholar 

  156. Villegas FA, Smith NR (2006) Supply chain dynamics: analysis of inventory vs. order oscillations trade-off. Int J Prod Res 44(6):1037–1054

    MATH  Google Scholar 

  157. Oliver R, Weber M (1982) Supply chain management: logistics catches up with strategy. In: Christopher M (ed) Logistics: the strategy issues. Outlook, Booz, Allen and Hamilton, London, pp 63–75

    Google Scholar 

  158. Berry D, Naim MM (1996) Quantifying the relative improvements of redesign strategies in a PC supply chain. Int J Prod Econ 46:181–196

    Google Scholar 

  159. Reklaitis GV (1982) Review of scheduling of process operations. AIChE Symp Ser 78:119–133

    Google Scholar 

  160. Blackburn JD (1991) Time-based competition: the next battleground in American manufacturing. Irwin, Homewood, IL

    Google Scholar 

  161. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MathSciNet  Google Scholar 

  162. Dubois D, Prade H (1988) Possibility theory. Plenum, New York, London

    MATH  Google Scholar 

  163. Perea-Lopez E, Ydstie BE, Grossmann IE (2003) A model predictive control strategy for supply chain optimization. Comput Chem Eng 27(8–9):1201–1218

    Google Scholar 

  164. Caridi M, Cavalieri S (2004) Multi-agent systems in production planning and control: an overview. Prod Plan Control 15(2):106–118

    Google Scholar 

  165. Liu YK, Liu BD (2005) Fuzzy random programming with equilibrium chance constraints. Inf Sci 170(2–4):363–395

    MATH  Google Scholar 

  166. Liu YK, Liu BD (2005) On minimum-risk problems in fuzzy random decision systems. Comput Oper Res 32(2):257–283

    MATH  MathSciNet  Google Scholar 

  167. Liu YK, Liu BD (2003) A class of fuzzy random optimization: expected value models. Inf Sci 155(1–2):89–102

    MATH  Google Scholar 

  168. Kwakernaak H (1979) Fuzzy random-variables. 2. Algorithms and examples for the discrete case. Inf Sci 17(3):253–278

    MATH  MathSciNet  Google Scholar 

  169. Puri ML, Ralescu DA (1986) Fuzzy random-variables. J Math Anal Appl 114(2):409–422

    MATH  MathSciNet  Google Scholar 

  170. Luhandjula MK (2004) Optimisation under hybrid uncertainty. Fuzzy Sets Syst 146(2):187–203

    MATH  MathSciNet  Google Scholar 

  171. Luhandjula MK (2006) Fuzzy stochastic linear programming: survey and future research directions. Eur J Oper Res 174(3):1353–1367

    MATH  MathSciNet  Google Scholar 

  172. Li J, Xu HP, Gen MS (2006) A class of multiobjective linear programming model with fuzzy random coefficients. Math Comput Model 44(11–12):1097–1113

    MATH  MathSciNet  Google Scholar 

  173. Van Hop N (2007) Solving fuzzy (stochastic) linear programming problems using superiority and inferiority measures. Inf Sci 177(9):1977–1991

    MATH  Google Scholar 

  174. Van Hop N (2007) Fuzzy stochastic goal programming problems. Eur J Oper Res 176(1):77–86

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Peidro.

Additional information

This work has been carried out in the framework of a project funded by the Spanish Ministry of Science and Technology entitled ‘Hierarchical methodology in the context of uncertainty in the collaborative planning of a supply–distribution chain/network. Application to the ceramic sector’. Ref. DPI2004-06916-C02-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peidro, D., Mula, J., Poler, R. et al. Quantitative models for supply chain planning under uncertainty: a review. Int J Adv Manuf Technol 43, 400–420 (2009). https://doi.org/10.1007/s00170-008-1715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1715-y

Keywords

Navigation