Skip to main content
Log in

Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work developed a novel process of magnetic-force-assisted electrical discharge machining (EDM) and conducted an experimental investigation to optimize the machining parameters associated with multiple performance characteristics using gray relational analysis. The main machining parameters such as machining polarity (P), peak current (I P), pulse duration (τ P), high-voltage auxiliary current (I H), no-load voltage (V), and servo reference voltage (S V) were selected to explore the effects of multiple performance characteristics on the material removal rate, electrode wear rate, and surface roughness. The experiments were conducted according to an orthogonal array L18 based on Taguchi method, and the significant process parameters that affected the multiple performance characteristics of magnetic-force-assisted EDM were also determined form the analysis of variance. Moreover, the optimal combination levels of machining parameters were also determined from the response graph and then verified experimentally. The multiple performance characteristics of the magnetic-force-assisted EDM were improved, and the EDM technique with high efficiency, high precision, and high-quality surface were established to meet the demand of modern industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fallbohmer P, Altan T, Tonshoff HK, Nakagawa T (1996) Survey of the die and mold manufacturing industry. J Mater Process Technol 59:158–168 doi:10.1016/0924-0136(96)02297-2

    Article  Google Scholar 

  2. Khairy AB (2001) Aspects of surface and edge finish by magnetoabrasive particles. J Mater Process Technol 116:77–83 doi:10.1016/S0924-0136(01)00840-8

    Article  Google Scholar 

  3. Chang GW, Yan BH, Hsu RT (2002) Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives. Int J Mach Tools Manuf 42:575–583 doi:10.1016/S0890-6955(01)00153-5

    Article  Google Scholar 

  4. Singh S, Shan HS (2002) Development of magneto abrasive flow machining process. Int J Mach Tools Manuf 42:953–959 doi:10.1016/S0890-6955(02)00021-4

    Article  Google Scholar 

  5. Mori T, Hirota K, Kawashima Y (2003) Clarification of magnetic abrasive finishing mechanism. J Mater Process Technol 143–144:682–686 doi:10.1016/S0924-0136(03)00410-2

    Article  Google Scholar 

  6. Kim JD (2003) Polishing of ultra-clean inner surfaces using magnetic force. Int J Adv Manuf Technol 21:91–97

    Google Scholar 

  7. Yin S, Shinmura T (2004) A comparative study: polishing characteristics and its mechanisms of three vibration models in vibration-assisted magnetic abrasive polishing. Int J Mach Tools Manuf 44:383–390 doi:10.1016/j.ijmachtools.2003.10.002

    Article  Google Scholar 

  8. Yan BH, Chang GW, Chang JH, Hsu RT (2004) Improving electrical discharge machined surfaces using magnetic abrasive finishing. Machg Sci Technol 8(1):103–118 doi:10.1081/MST-120034246

    Article  Google Scholar 

  9. Wang Y, Hu D (2005) Study on the inner surface finishing of tubing by magnetic abrasive finishing. Int J Mach Tools Manuf 45:43–49 doi:10.1016/j.ijmachtools.2004.06.014

    Article  Google Scholar 

  10. Jayswal SC, Jain VK, Dixit PM (2005) Modeling and simulation of magnetic abrasive finishing process. Int J Adv Manuf Technol 26:477–490 doi:10.1007/s00170-004-2180-x

    Article  Google Scholar 

  11. Singh DK, Jain VK, Raghuram V (2006) Experimental investigations into forces acting during a magnetic abrasive finishing process. Int J Adv Manuf Technol 30:652–662 doi:10.1007/s00170-005-0118-6

    Article  Google Scholar 

  12. Lin CT, Yang LD, Chow HM (2007) Study of magnetic abrasive finishing in free-form surface operations using the Taguchi method. Int J Adv Manuf Technol 34:122–130 doi:10.1007/s00170-006-0573-8

    Article  Google Scholar 

  13. Kim JD, Jin DX, Choi MS (1997) Study on the effect of a magnetic field on an electrolytic finishing process. Int J Mach Tools Manuf 37:401–408 doi:10.1016/S0890-6955(96)00071-5

    Article  Google Scholar 

  14. De Bruijn HE, Delft TH, Pekelharig AJ (1978) Effect of a magnetic field on the gap cleaning in EDM. Ann CIRP 27(1):93–95

    Google Scholar 

  15. Rajurkar KP, Pandit SM (1988) Formation and ejection of EDM debris. Trans ASME 108(2):22–26

    Google Scholar 

  16. Masuzawa T, Cui X, Taniguchi N (1992) Improved jet flushing for EDM. Ann CIRP 41:239–242

    Article  Google Scholar 

  17. Soni JS (1994) Microanalysis of debris formed during rotary EDM of titanium alloy (Ti6 Al 4V) and die steel (T215 Cr12). Wear 177:71–79 doi:10.1016/0043-1648(94)90119-8

    Article  Google Scholar 

  18. Lou YF (1997) The dependence of interspace discharge transitivity upon the gap debris in precision electrodischarge machining. J Mater Process Technol 68:121–131 doi:10.1016/S0924-0136(96)00019-2

    Article  Google Scholar 

  19. Cetin S, Okada A, Uno Y (2004) Effect of debris accumulation on machining speed in EDM. Int J Electr Mach 9:9–14

    Google Scholar 

  20. Kremer D, Lhiaubet C, Moisan A (1991) A study of the effect of synchronizing ultrasonic vibrations with pulse in EDM. Ann CIRP 40(1):211–214

    Article  Google Scholar 

  21. Thoe TB, Aspinwall DK, Killey N (1999) Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. J Mater Process Technol 92–93:323–328 doi:10.1016/S0924-0136(99)00117-X

    Article  Google Scholar 

  22. Lin YC, Yan BH, Chang YS (2000) Machining characteristics of titanium alloy (Ti-6Al-4V) using combination process of EDM with USM. J Mater Process Technol 104:171–177 doi:10.1016/S0924-0136(00)00539-2

    Article  Google Scholar 

  23. Zhang QH, Zhang JH, Deng JX, Qin Y, Niu ZW (2002) Ultrasonic vibration electrical discharge machining in gas. J Mater Process Technol 129:135–138 doi:10.1016/S0924-0136(02)00596-4

    Article  Google Scholar 

  24. Lin YC, Yan BH, Huang FY (2001) Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM. J Mater Process Technol 115:359–366 doi:10.1016/S0924-0136(01)01017-2

    Article  Google Scholar 

  25. Lin CL, Lin JL, Ko TC (2002) Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int J Adv Manuf Technol 19:271–277 doi:10.1007/s001700200034

    Article  Google Scholar 

  26. Lin JL, Lin CL (2002) The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. J Mache Tools Manuf 42:237–244 doi:10.1016/S0890-6955(01)00107-9

    Article  Google Scholar 

  27. Wang CH, Tong LI (2003) Quality improvement for dynamic ordered categorical response using grey relational analysis. Int J Adv Manuf Technol 21:377–383 doi:10.1007/s001700300043

    Article  Google Scholar 

  28. Jeyapaul R, Shahabudeen P, Krishnaiah K (2003) Quality management research by considering multi-response problems in the Taguchi method—a review. Int J Adv Manuf Technol 21:377–383 doi:10.1007/s001700300043

    Article  Google Scholar 

  29. Kao PS, Hocheng H (2003) Optimization of electrochemical polishing of stainless steel by grey relational analysis. J Mater Process Technol 140:255–259 doi:10.1016/S0924-0136(03)00747-7

    Article  Google Scholar 

  30. Huang JT, Liao YS (2003) Optimization of machining parameters of wire-EDM based on grey relational and statistical analyses. Int J Prod Res 41(8):1707–1720 doi:10.1080/1352816031000074973

    Article  MATH  Google Scholar 

  31. Singh PN, Raghukandan K, Pai BC (2004) Optimization by grey relational analysis of EDM parameters on machining Al-10% SiCp composites. J Mater Process Technol 155–156:1865–1661

    Google Scholar 

  32. Lin JL, Lin CL (2005) The use of grey-fuzzy logic for the optimization of the manufacturing process. J Mater Process Technol 160:9–14 doi:10.1016/j.jmatprotec.2003.11.040

    Article  Google Scholar 

  33. Pan LK, Wang CC, Wei SL, Sher HF (2007) Optimizing multiple quality characteristics via Taguchi method-based grey analysis. J Mater Process Technol 182:107–116 doi:10.1016/j.jmatprotec.2006.07.015

    Article  Google Scholar 

  34. Gangadhar A, Shunmugam MS, Philip PK (1992) Pulse train studies in EDM with controlled pulse Relaxation. Int J Mach Tools Manuf 32(5):651–657 doi:10.1016/0890-6955(92)90020-H

    Article  Google Scholar 

  35. Liao YS, Huang JT, Su HC (1997) A study on the machining-parameters optimization of wire electrical discharge machining. J Mater Process Technol 71:487–493 doi:10.1016/S0924-0136(97)00117-9

    Article  Google Scholar 

  36. Lin YC, Yan BH, Huang FY (2001) Surface improvement using a combination electrical discharge machining with ball burnish machining based on the Taguchi method. Int J Adv Manuf Technol 18:673–682 doi:10.1007/s001700170028

    Article  Google Scholar 

  37. Lin YC, Cheng CH, Su BL, Hwang LR (2006) Machining characteristics and optimization of machining parameters of SKH 57 high-speed-steel using electrical-discharge-machining based on Taguchi method. Mater Manuf Process 21:922–929 doi:10.1080/03602550600728133

    Article  Google Scholar 

  38. Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  39. Tzeng HJ, Yan BH, Hsu RT, Chow HM (2007) Finishing effect of abrasive flow machining on micro slit fabricated by wire-EDM. Int J Adv Manuf Technol 34:649–656 doi:10.1007/s00170-006-0632-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Cherng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YC., Lee, HS. Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis. Int J Adv Manuf Technol 42, 1052–1064 (2009). https://doi.org/10.1007/s00170-008-1662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1662-7

Keywords

Navigation