Skip to main content
Log in

Development of evaluation technique for microcharacteristics of thixoforged wrought aluminum alloy by nanoindention and atomic force microscopy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study demonstrated nanoindentation techniques of investigating the effects of size and feature in a microstructure on the mechanical properties of thixoforged aluminum alloy. Mechanical properties and tribological characteristics of rheology-forged Al2024 wrought aluminum alloy in terms of T6 heat treatment were investigated by varying the aging time by nanoindentation and nanoscratch techniques. By nanoindentation/nanoscratch tests and atomic force microscopy, it was demonstrated that the 4-h aged material exhibited the highest hardness because of the intermediate precipitate phase θ″, which was precipitated by T6 heat treatment. Moreover, the friction coefficients in the precipitates in the eutectic phase region were lower than those in the primary α phase region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chryssolouris G, Stavropoulos P, Tsoukantas G, Salonitis K, Stournaras A (2001) Nanomanufacturing processes: a critical review. Int J Mater Prod Technol 21(4):331–348 doi:10.1504/IJMPT.2004.004946

    Article  Google Scholar 

  2. Ji S, Fan Z, Bevis MJ (2001) Semi-solid processing of engineering alloys by a twin-screw rheomoulding process. Mater Sci Eng A 299:210–217 doi:10.1016/S0921-5093(00)01373-3

    Article  Google Scholar 

  3. Adachi M, Sato S sasaki H, Harasa Y, Maeda T, and Ishibash N (2002) The effect of casting condition for mechanical properties of cast alloys made with new rheocasting process. Proc. of the 7th Int. Conf. on Semi-Solid Processing of Alloys and Composites, pp. 629–634.

  4. Sun D, Sun XC, Northwood DO, Sokolowski JH (1996) Thermoelectric power characterization of a 2024 aluminum alloy during solution treatment and aging. Mater Charact 36:83–92 doi:10.1016/1044-5803(96)00002-2

    Article  Google Scholar 

  5. Sen N, West DRF (1969) Some factors influencing precipitation in Al–Cu–Mg and Al–Mg–Cu–Ag alloys. J Inst Met 97:87–92

    Google Scholar 

  6. Edwards GA, Stiller K, Dunlop GL, Couper MJ (1998) The precipitation sequence in Al–Mg–Si alloys. Acta Mater 46(11):3893–3904 doi:10.1016/S1359-6454(98)00059-7

    Article  Google Scholar 

  7. Jung HK, Kang CG (2000) Rheating process of cast and wrought aluminum alloys for thixo-forming and their globularization mechanism. J Mater Process Technol 104:244–253 doi:10.1016/S0924-0136(00)00576-8

    Article  Google Scholar 

  8. Seo PK, Kim DU, Kang CG (2007) The effect of the gate shape on the micro-structural characteristic of the grain size of Al–Si alloy in the semi solid die casting. Mater Sci Eng A 445–446:20–30 doi:10.1016/j.msea.2006.06.133

    Google Scholar 

  9. Kang CG, Seo PK, Jeon YP (2005) Thixo die casting for fabrication of thin type component with wrought aluminum alloy and its formability limitation. J Mater Process Technol 162–163:59–69 doi:10.1016/j.jmatprotec.2004.03.032

    Article  Google Scholar 

  10. Shen W, Mi L, Jiang B (2006) Characterization of mar/scratch resistance of coating with a nano-indenter and a scanning probe microsope. Tribol Int 39:146–158 doi:10.1016/j.triboint.2005.04.023

    Article  Google Scholar 

  11. Wang XY, Zhang H, Li DY (2004) Characterization of lubricated worn surface using a nano/micro-indenter. Mater Sci Eng A 371:222–228 doi:10.1016/j.msea.2003.11.049

    Article  Google Scholar 

  12. Qian L, Li M, Zhou Z, Yang H, Shi X (2005) Comparison of nano-indentation hardness to microhardness. Surf Coat Tech 195:264–271 doi:10.1016/j.surfcoat.2004.07.108

    Article  Google Scholar 

  13. Huang L, Lu J, Xu K (2004) Elasto-plastic deformation and fracture mechanism of a diamond-like carbon film deposited on a Ti-6Al-4V substrate in nano-scratch test. Thin Solid Films 466:175–182 doi:10.1016/j.tsf.2004.03.026

    Article  Google Scholar 

  14. Wellman RG, Dyer A, Nicholls JR (2004) Nano and micro indentation studies of bulk ziroconia and EB PVD TBCs. Surf Coat Tech 176:253–260 doi:10.1016/S0257-8972(03)00737-0

    Article  Google Scholar 

  15. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583 doi:10.1557/JMR.1992.1564

    Article  Google Scholar 

  16. MTS Systems. Nanoindenter®XP, manual

  17. Dao M, Chollacoop N, Van Vliet KJ, TA Venkatesh TA, S Suresh S (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49:3899–3918 doi:10.1016/S1359-6454(01)00295-6

    Article  Google Scholar 

  18. Bucaille JL, Stauss S, Felder E, Michler J (2003) Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater 51:1663–1678 doi:10.1016/S1359-6454(02)00568-2

    Article  Google Scholar 

  19. Fischer-Cripps AC (2002) Nanoindentation. Mech Eng Series. Springer, Berlin, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, S.H., Kang, C.G. & Lee, S.M. Development of evaluation technique for microcharacteristics of thixoforged wrought aluminum alloy by nanoindention and atomic force microscopy. Int J Adv Manuf Technol 42, 892–909 (2009). https://doi.org/10.1007/s00170-008-1650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1650-y

Keywords

Navigation