Skip to main content
Log in

Rheological characterization of magnetorheological polishing fluid for MRAFF

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The finishing action in magnetorheological abrasive flow finishing (MRAFF) process relies mainly on bonding strength around abrasive particles in magnetorheological polishing (MRP) fluid due to cross-linked columnar structure of carbonyl iron particles. The fluid flow behaviour of MRP fluid exhibits a transition from weak Bingham liquid-like structure to a strong gel-like structure on the application of magnetic field. Depending on the size and volume concentration of abrasives and carbonyl iron particles (CIPs) in the base medium, the rheological properties hence, bonding strength gained by abrasives through surrounding CIP chains varies. To study the effect of particle size on rheological properties of MRP fluid, a hydraulically driven specially designed capillary magnetorheometer was fabricated. The rheological properties of MRP fluids in the homogeneous magnetic field perpendicular to the shear flow direction are evaluated. The three constitutive models, viz. Bingham plastic, Herschel–Bulkley and Casson’s fluid, are used to characterise the rheological behaviour of MRP fluid by fitting the rheological data obtained from capillary magnetorheometer and evaluating respective constants in their constitutive equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jha Sunil, Jain VK (2004) Design and development of magnetorheological abrasive flow finishing (MRAFF) process. Int J Mach Tools Manuf 44(10):1019–1029 doi:10.1016/j.ijmachtools.2004.03.007

    Article  Google Scholar 

  2. Rabinow J (1948) The magnetic fluid clutch. AIEE Trans 67:1308

    Google Scholar 

  3. Jha S, Jain VK, Komanduri R (2006) Effect of extrusion pressure and number of finishing cycles on surface roughness in magnetorheological abrasive flow finishing (MRAFF) process. Int J Adv Manuf Technol 33:725–729

    Article  Google Scholar 

  4. Phule PP (1998) Synthesis of novel magnetorheological fluids. MRS Bull 23:23–25

    Google Scholar 

  5. Rankin PJ, Horvath AT, Klingeberg DJ (1999) Magnetorheology in viscoplastic media. Rheol Acta 38:471–477 doi:10.1007/s003970050198

    Article  Google Scholar 

  6. Jolly MR, Bender JW, Carlson JD (2000) Properties and applications of commercial magnetorheological fluids. J Intell Mater Syst Struct 10(1):5–13 doi:10.1106/R9AJ-XYT5-FG0J-23G1

    Article  Google Scholar 

  7. Phule PP, Ginder JM (1999) Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility. Int J Mod Phys B 13/14–16:2019–2027

    Article  Google Scholar 

  8. Genc S, Phule PP (2002) Rheological properties of magnetorheological fluids. Smart Mater Struct 11:140–146 doi:10.1088/0964-1726/11/1/316

    Article  Google Scholar 

  9. Jolly MR, Carlson JD, Munoz BC (1996) A model of the behaviour of magnetorheological materials. Smart Mater Struct 5:607–614 doi:10.1088/0964-1726/5/5/009

    Article  Google Scholar 

  10. Macosko CW (1994) Rheology: principles, measurements, and applications. VCH, New York

    Google Scholar 

  11. Ginder JM, Davis LC (1994) Shear stresses in magnetorheological fluids: role of magnetic saturation. Appl Phys Lett 65:3410–3412 doi:10.1063/1.112408

    Article  Google Scholar 

  12. Carlson JD, Catanzarite DM, Clair KA (1996) Commercial magnetorheological fluid devices. Int J Mod Phys B 10:2857–2865 doi:10.1142/S0217979296001306

    Article  Google Scholar 

  13. Ginder JM (1998) Behaviour of magnetorheological fluids. MRS Bull 23:26–29 (Aug)

    Google Scholar 

  14. Rosenfeld N, Wereley NM, Radakrishnan R, Sudarshan TS (2002) Behavior of magnetorheological fluids utilizing nanopowder iron. Int J Mod Phys B 16/17–18:2392–2398

    Article  Google Scholar 

  15. Casson N (1959) In: Mill CC (ed) Rheology of dispersed systems, vol. 84. Pergamon, Oxford

    Google Scholar 

  16. Dash RK, Mehta KN, Jayaraman G (1996) Casson fluid flow in a pipe filled with a homogeneous porous medium. Int J Eng Sci 34(10):1145–1156 doi:10.1016/0020-7225(96)00012-2

    Article  MATH  Google Scholar 

  17. Fung YC (1981) Mechanical properties of living tissues, Chapter 3. Biomechanics Springer, New York

    Google Scholar 

  18. Jdayil BA, Asoud H, Brunn PO (2007) Effect of polymer coating on the behavior of an electro-rheological fluid in slit flow. Mater Des 28:928–940

    Google Scholar 

  19. Macosko CW (1994) Rheology: principles, measurements, and applications. VCH, New York

    Google Scholar 

  20. Lemaire E, Bossis G (1991) Yield stress and wall effects in magnetic colloidal suspensions. J Phys D 24:1473–1477 doi:10.1088/0022-3727/24/8/037

    Article  Google Scholar 

  21. Laun HM, Kormann C, Willenbacher N (1996) Rheometry of magnetorheological (MR) fluids—I. Steady shear flow in stationary magnetic fields. Rheol Acta 35:417–432 doi:10.1007/BF00368993

    Article  Google Scholar 

  22. Shorey AB, Kordonski WI, Gorodkin SR, Jacobs SD, Gans RF, Kwong KM et al (1999) Design and testing of a new magnetorheometer. Rev Sci Instrum 70(11):4200–4206 doi:10.1063/1.1150052

    Article  Google Scholar 

  23. Odenbach S, Stork H (1998) Shear dependence of field induced contributions to the viscosity of magnetic fluids at low shear rate. J Magn Magn Mater 183:188–194 doi:10.1016/S0304-8853(97)01051-2

    Article  Google Scholar 

  24. Dang A, Ooi L, Fales J, Stroeve P (2000) Yield stress measurements of magnetorheological fluids in tubes. Ind Eng Chem Res 39:2269–2274 doi:10.1021/ie9908276

    Article  Google Scholar 

  25. Chin BD, Park JH, Kwon MH, Park OO (2001) Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheol Acta 40:211–219 doi:10.1007/s003970000150

    Article  Google Scholar 

  26. Van Wazer JR, Lyons JW, Kim KY, Colwell RE (1963) Viscosity and flow measurement. Wiley, New York

    Google Scholar 

  27. Chhabra RP, Richardson JF (1999) Non-newtonian flow in the process industries—fundamentals and engineering applications. Butterworth Heinemann, Oxford

    Google Scholar 

  28. Jha Sunil, Jain VK (2006) Modeling and simulation of surface roughness in magnetorheological abrasive flow finishing (MRAFF). Process Wear 261(7–8):856–866 doi:10.1016/j.wear.2006.01.043

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, S., Jain, V.K. Rheological characterization of magnetorheological polishing fluid for MRAFF. Int J Adv Manuf Technol 42, 656–668 (2009). https://doi.org/10.1007/s00170-008-1637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1637-8

Keywords

Navigation