Skip to main content
Log in

Simulation solving/modifying velocity and acceleration of a 4UPS+SPR type parallel machine tool during normal machining of a 3D free-form surface

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A CAD variation geometry approach is proposed for solving/modifying the inverse velocity/acceleration of the active legs and the forward velocity/acceleration of a 5-dof 4UPS + SPR parallel machine tool (PMT) during its simulation normal machining of a 3D free-form surface. First, the twin simulation mechanisms of this PMT with the same base are created for normal machining the same 3D free-form surface. Second, a velocity simulation mechanism of this PMT is created from the twin simulation mechanisms. Third, an acceleration simulation mechanism of this PMT is created from the three similar simulation mechanisms with the same base. Finally, the extension, the velocity and acceleration of the active legs, and the velocity and acceleration of the PMT are solved and modified during the simulation normal machining of the 3D free-form surface. The simulation solutions are verified by an analytic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Z, Fang YF, Kong LF (1998) Mechanism theory of spatial parallel robot and control. Mechanical Industry Press, Beijing

    Google Scholar 

  2. Zhang S, Heisel U (2003) Parallel machine tool. Mechanical Industry Press, Beijing

    Google Scholar 

  3. Terrier M, Dugas A, Hascoët J-Y (2004) Qualification of parallel kinematics machines in high-speed milling on free form surfaces. Int J Mach Tools Manuf 44(7–8):865–877 doi:10.1016/j.ijmachtools.2003.11.003

    Article  Google Scholar 

  4. Patel AJ, Ehmann KF (2000) Calibration of a hexapod machine tool using a redundant leg. Int J Mach Tools Manuf 40(4):489–512 doi:10.1016/S0890-6955(99)00081-4

    Article  Google Scholar 

  5. Chen J-S, Hsu W-Y (2004) Design and analysis of a tripod machine tool with an integrated Cartesian guiding and metrology mechanism. Precis Eng 28(1):46–57 doi:10.1016/S0141-6359(03)00073-4

    Article  MathSciNet  Google Scholar 

  6. Wang H, Fan K-C (2004) Identification of strut and assembly errors of a 3-PRS serial-parallel machine tool. Int J Mach Tools Manuf 44(11):1171–1178

    Article  Google Scholar 

  7. Fan K-C, Wang H, Zhao J-W, Chang T-H (2003) Sensitivity analysis of the 3-PRS parallel kinematic spindle platform of a serial-parallel machine tool. Int J Mach Tools Manuf 43(15):1561–1569 doi:10.1016/S0890-6955(03)00202-5

    Article  Google Scholar 

  8. Geldart M, Webb P, Larsson H, Backstrom M, Gindy N, Rask K (2003) A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools. Int J Mach Tools Manuf 43(11):1107–1116 doi:10.1016/S0890-6955(03)00119-6

    Article  Google Scholar 

  9. Company O, Pierrot F (2002) Modeling and design issues of a 3-axis parallel machine-tool. Mech Mach Theory 37(11):1325–1345 doi:10.1016/S0094-114X(02)00040-X

    Article  MATH  Google Scholar 

  10. Cai G-Q, Wang Q-M, Hu M, Kang M-C, Kim N-K (2001) A study on the kinematics and dynamics of a 3-DOF parallel machine tool. J Mater Process Technol 111(1–3):269–272 doi:10.1016/S0924-0136(01)00532-5

    Article  Google Scholar 

  11. Dong J, Yuan C, Stori J-A, Ferreira P-M (2004) Development of a high-speed 3-axis machine tool using a novel parallel- kinematics X–Y table. Int J Mach Tools Manuf 44(12–13):1355–1371 doi:10.1016/j.ijmachtools.2004.04.009

    Article  Google Scholar 

  12. Kim B-H, Choi B-K (2000) Guide surface based tool path generation in 3-axis mill: an extension of the guide plane method. Comput Aided Des 32(3):191–199

    Article  Google Scholar 

  13. Gao F, Peng B-B, Zhao H, Li WM (2006) A novel 5-DOF fully parallel kinematic machine tool. Int J Adv Manuf Technol 31(1):201–207 doi:10.1007/s00170-005-0171-1

    Article  Google Scholar 

  14. Gao F, Li WM, Peng B-B, Zhao H (2005) Design of a novel 5-DOF parallel kinematic machine tool based on workspace. Robotica 23(1):35–43 doi:10.1017/S0263574704000451

    Article  Google Scholar 

  15. Lu Y, Hu B, Xu J-Y (2008) Kinematics analysis and solution of active/passive forces of a 4SPS+SPR parallel machine tool. Int J Adv Manuf Technol 36(1–2):178–187 doi:10.1007/s00170-006-0833-7

    Article  Google Scholar 

  16. Fang Y-F, Tsai L-W (2002) Structure synthesis of a class of 4-dof and 5-dof parallel manipulators with identical limb structures. Int J Robot Res 21(9):799–810 doi:10.1177/0278364902021009314

    Article  Google Scholar 

  17. Li Q-C, Huang Z, Hervé J-M (2004) Type synthesis of 3R2T 5-dof parallel mechanisms using Lie group of displacements. IEEE Trans Robot Autom 20(2):173–180 doi:10.1109/TRA.2004.824650

    Article  MATH  Google Scholar 

  18. Alizade RI, Bayram C (2004) Structural synthesis of parallel manipulators. Mech Mach Theory 39(8):857–870 doi:10.1016/j.mechmachtheory.2004.02.008

    Article  MATH  MathSciNet  Google Scholar 

  19. Kim T, Sarma S-E (2002) Toolpath generation along directions of maximum kinematic performance; a first cut at machine- optimal paths. Comput Aided Des 34(6):453–468 doi:10.1016/S0010-4485(01)00116-6

    Article  Google Scholar 

  20. Koparkar P-A, Mudur S-P (1986) Generation of continuous smooth curves resulting from operations on parametric surface patches. Comput Aided Des 18(4):193–206 doi:10.1016/0010-4485(86)90131-4

    Article  Google Scholar 

  21. Farin G (1990) Curves and surfaces for computer-aided geometry for design. Academic, San Diego

    Google Scholar 

  22. Hartley PJ, Judd CJ (1980) Parameterization and shape of B-spline curve for CAD. Comput Aided Des 12(5):235–238 doi:10.1016/0010-4485(80)90028-7

    Article  Google Scholar 

  23. Zhang D, Wang L, Lang SYT (2005) Parallel kinematic machines: design, analysis and simulation in an integrated virtual environment. ASME J Mech Des 127(4):580–588 doi:10.1115/1.1897745

    Article  Google Scholar 

  24. Senin N, Wallace DR, Borland N (2003) Distributed object-based modeling in design simulation marketplace. ASME J Mech Des 125(1):2–13 doi:10.1115/1.1540993

    Article  Google Scholar 

  25. Lu Y (2004) Using CAD functionalities for the kinematics analysis of spatial parallel manipulators with 3-, 4-, 5-, 6-linearly driven limbs. Mach Mech Theory 39(1):46–60

    Google Scholar 

  26. Lu Y (2006) Using CAD variation geometry for solving velocity and acceleration of parallel manipulators with 3–5 linear driving limbs. ASME J Mech Des 128(4):738–746 doi:10.1115/1.2202147

    Article  Google Scholar 

  27. Lu Y (2002) Computer simulation applied to an orthogonal three-rod machine tool for machining a complicated three-dimensional surface. Int J Mach Tools Manuf 42(11):1277–1284 doi:10.1016/S0890-6955(02)00035-4

    Article  Google Scholar 

  28. Lu Y (2007) Simulation of machining 3D free-form surface in normal direction using 6-SSP and 4SPS+UPU parallel machine tools. Int J Adv Manuf Technol 33(11–12):1180–1188 doi:10.1007/s00170-006-0547-x

    Article  Google Scholar 

  29. Lu Y (2005) Computer-aided geometric machining of a 3D free surface using a 3-UPU spatial parallel machine tool. Int J Adv Manuf Technol 26(10):1018–1025 doi:10.1007/s00170-004-2065-z

    Article  Google Scholar 

  30. Lu Y, Xu J-Y (2007) Computer simulation machining a 3D free surface by using a 3-RPRU parallel machine tool. Int J Adv Manuf Technol 33(7–8):782–792 doi:10.1007/s00170-006-0516-4

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Xu, J. Simulation solving/modifying velocity and acceleration of a 4UPS+SPR type parallel machine tool during normal machining of a 3D free-form surface. Int J Adv Manuf Technol 42, 804–812 (2009). https://doi.org/10.1007/s00170-008-1630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1630-2

Keywords

Navigation