Skip to main content

Advertisement

Log in

Scheduling jobs under constant period-by-period resource availability to maximize project profit at a due date

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, we propose a lump-sum payment model for the resource-constrained project scheduling problem, which is a generalization of the job shop scheduling problem. The model assumes that the contractor will receive the profit of each job at a predetermined project due date, while taking into account the time value of money. The contractor will then schedule the jobs with the objective of maximizing his total future net profit value at the due date. This proposed problem is nondeterministic polynomial-time (NP)-hard and mathematically formulated in this paper. Several variable neighborhood search (VNS) algorithms are developed by using insertion move and two-swap to generate various neighborhood structures, and making use of the well-known backward–forward scheduling, a proposed future profit priority rule, or a short-term VNS as the local refinement scheme (D-VNS). Forty-eight 20-job instances were generated using ProGen and optimally solved with ILOG CPLEX. The performances of these algorithms are evaluated based on the optimal schedules of the 48 test instances. Our experimental results indicate that the proposed VNS algorithms frequently obtain optimal solutions in a short computational time. For larger size problems, our experimental results also indicate that the D-VNS with forward direction movement outperforms the other VNS algorithms, as well as a genetic algorithm and a tabu search algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsu CC, Kim DS (2005) A new heuristic for the multi-mode resource investment problem. J Oper Res Soc 56:406–413 doi:10.1057/palgrave.jors.2601827

    Article  MATH  Google Scholar 

  2. Yamashita DS, Armentano VA, Laguna M (2006) Scatter search for project scheduling with resource availability cost. Eur J Oper Res 169:623–637 doi:10.1016/j.ejor.2004.08.019

    Article  MATH  MathSciNet  Google Scholar 

  3. Wu MC, Sun SH (2006) A project scheduling and staff assignment model considering learning effect. Int J Adv Manuf Technol 28:1190–1195 doi:10.1007/s00170-004-2465-0

    Article  Google Scholar 

  4. Zhu D, Padman R (1999) A metaheuristic scheduling procedure for resource-constrained projects with cash flows. Nav Res Log 46:912–927 doi:10.1002/(SICI)1520-6750(199912)46:8<>3.0.CO;2-C

    Article  MATH  Google Scholar 

  5. Ulusoy G, Sivrikaya-Serifoğlu F, Sihin S (2001) Four payment models for the multi-mode resource constrained project scheduling problem with discounted cash flows. Ann Oper Res 102:237–261 doi:10.1023/A:1010914417817

    Article  MATH  MathSciNet  Google Scholar 

  6. Russell AH (1970) Cash flows in networks. Manage Sci 16:357–173

    Article  MATH  Google Scholar 

  7. Grinold RC (1972) The payment scheduling problem. Navres Logist Q 9:123–136 doi:10.1002/nav.3800190110

    Article  MathSciNet  Google Scholar 

  8. Talbot FB (1982) Resource constrained project scheduling with time-resource tradeoffs: the nonpreemptive case. Manage Sci 28:1197–1210

    Article  MATH  Google Scholar 

  9. Icmeli O, Erenűuc CC (1996) A branch and bound procedure for the resource constrained project scheduling problem with discounted cash flows. Manage Sci 42:1395–1408

    Article  MATH  Google Scholar 

  10. Vanhoucke M, Demeulemeester E, Herroelen W (2001) On maximizing the net present value of a project under renewable resource constraints. Manage Sci 47(8):1113–1121 doi:10.1287/mnsc.47.8.1113.10226

    Article  Google Scholar 

  11. Vanhoucke M, Demeulemeester E, Herroelen W (2003) Progress payments in project scheduling problems. Eur J Oper Res 148:604–620 doi:10.1016/S0377-2217(02)00452-6

    Article  MATH  MathSciNet  Google Scholar 

  12. Mika M, Waligóra G, Weglarz J (2005) Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. Eur J Oper Res 164:639–668 doi:10.1016/j.ejor.2003.10.053

    Article  MATH  Google Scholar 

  13. Blazewicz J, Lenstra J, Rinnooy Kan AHG (1983) Scheduling subject to resource-constraints: classification and complexity. Discrete Appl Math 5:11–24 doi:10.1016/0166-*218X(83)90012-4

    Article  MATH  MathSciNet  Google Scholar 

  14. Tormos P, Lova A (2001) A competitive heuristic solution technique for resource-constrained project scheduling. Ann Oper Res 102:65–81 doi:10.1023/A:1010997814183

    Article  MATH  MathSciNet  Google Scholar 

  15. Hartmann S (1998) A competitive genetic algorithm for resource-constrained project scheduling. Nav Res Log 45:773–750

    MathSciNet  Google Scholar 

  16. Hartmann S (2002) A self-adapting genetic algorithm for project scheduling under resource constraints. Nav Res Log 45:443–448

    Google Scholar 

  17. Reddy JR, Kumanan S, Chetty OVK (2001) Application of petri nets and a genetic algorithm to multi-mode multi-resource constrained project scheduling. Int J Adv Manuf Technol 17:305–314 doi:10.1007/s001700170184

    Article  Google Scholar 

  18. Kumanan S, Jegan G, Raja K (2006) Multi-project scheduling using an heuristic and a genetic algorithm. Int J Adv Manuf Technol 31:360–366 doi:10.1007/s00170-005-0199-2

    Article  Google Scholar 

  19. Merkle D, Middendorf M, Schmeck H (2002) Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evol Comput 6:333–346 doi:10.1109/TEVC.2002.802450

    Article  Google Scholar 

  20. Agarwal R, Tiwari MK, Mukherjee SK (2007) Artificial immune system based approach for solving resource constraint project scheduling problem. Int J Adv Manuf Technol 34:584–593 doi:10.1007/s00170-006-0631-2

    Article  Google Scholar 

  21. Debels D, Reyck BD, Leus R, Vanhoucke M (2006) A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. Eur J Oper Res 169:638–653 doi:10.1016/j.ejor.2004.08.020

    Article  MATH  Google Scholar 

  22. Shukla KS, Son YJ, Tiwari MK (2008) Fuzzy-based adaptive sample-sort simulated annealing for resource-constrained project scheduling. Int J Adv Manuf Technol 36:982–995 doi:10.1007/s00170-006-0907-6

    Article  Google Scholar 

  23. Ying KC, Lin SW, Lee ZJ (2008) Hybrid-directional planning: improving improvement heuristics for scheduling resource-constrained projects. Int J Adv Manu Technol doi:10.1007/s00170-008-1486-5

  24. Kolisch R, Hartmann S (2006) Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling: an update. Eur J Oper Res 174:23–37 doi:10.1016/j.ejor.2005.01.065

    Article  MATH  Google Scholar 

  25. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100 doi:10.1016/S0305-0548(97)00031-2

    Article  MATH  MathSciNet  Google Scholar 

  26. Hansen P, Mladenović N (2001) Variable neighborhood search: principles and applications. Eur J Oper Res 130:449–467 doi:0.1016/S0377-2217(00)00100-4

    Article  MATH  Google Scholar 

  27. Freszar K, Hindi KS (2004) Solving the resource-constrained project scheduling problem by a variable neighborhood search. Eur J Oper Res 155:402–413 doi:10.1016/S0377-2217(02)00884-6

    Article  Google Scholar 

  28. Sprecher A, Kolisch R, Drexl A (1995) Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. Eur J Oper Res 80:94–102 doi:10.1016/0377-2217(93)E0294-8

    Article  MATH  Google Scholar 

  29. Kolisch R (1996) Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur J Oper Res 90:320–333 doi:10.1016/0377-2217(95)00357-6

    Article  MATH  Google Scholar 

  30. Gary MR, Johnson DS (1979) Computers and intractability: A guide to the theory of NP-Completeness. W H Freeman and Company, New York

    Google Scholar 

  31. Li KY, Willis RJ (1992) An iterative scheduling technique for resource-constrained project scheduling. Eur J Oper Res 56:370–379 doi:10.1016/0377-2217(92)90320-9

    Article  MATH  Google Scholar 

  32. Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manage Sci 41:1693–1703

    Article  MATH  Google Scholar 

  33. Kolisch R, Drexl A (1996) PSPLIB-A project scheduling problem library. Eur J Oper Res 96:205–216 doi:10.1016/S0377-2217(96)00170-1

    Article  Google Scholar 

  34. Holland JH (1976) Adaptation in nature and artificial systems. Univ Michigan Press, Ann Arbor

    Google Scholar 

  35. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  36. Glover F (1986) Future path for integer programming and links to artificial intelligence. Comput Oper Res 13:533–549 doi:10.1016/0305-0548(86)90048-1

    Article  MATH  MathSciNet  Google Scholar 

  37. Glover F, Laguna M (1997) Tabu search. Kluwer, Publisher, Norwell

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-C. Chyu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chyu, CC., Chen, ZJ. Scheduling jobs under constant period-by-period resource availability to maximize project profit at a due date. Int J Adv Manuf Technol 42, 569–580 (2009). https://doi.org/10.1007/s00170-008-1614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1614-2

Keywords

Navigation