Skip to main content
Log in

Mode I failure modeling of friction stir welding joints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper analyzes mechanical response by finite element method up to the decohesion failure in fracture mode I for joints of friction stir welding (FSW) of an aluminum alloy. It first describes experimental investigations on specimens with FSW embedded, subjected to uniform traction and local punch tests used to characterize local elastic and plastic material parameters. The heterogeneity of the mechanical properties induced by the FSW process is taken into account for the elastic-plastic finite element simulation. The growing damage and the opening failure of the welding zone are described by the adoption of a cohesive interface model with specific mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu HJ, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminium alloy. J Mater Process Technol 142:692–696 DOI 10.1016/S0924-0136(03)00806-9

    Article  Google Scholar 

  2. Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC (1999) Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Mater 36(1):69–75 DOI 10.1016/S1359-6462(96)00344-2

    Google Scholar 

  3. Guerra M, Schmidt C, McClure LC, Murr LE, Nunes AC (2003) Flow patterns during friction stir welding. Mater Charact 49:95–101 DOI 10.1016/S1044-5803(02)00362-5

    Article  Google Scholar 

  4. Su JQ, Nelson TW, Mishra R, Mahoney M (2003) Microstructural investigation of friction stir welded 7050-T654 aluminium. Acta Mater 51:713–729 DOI 10.1016/S1359-6454(02)00449-4

    Article  Google Scholar 

  5. Lee WB, Yeon YM, Jung SB (2003) The improvement of mechanical properties of friction-stir-welded A356 Al alloy. Mater Sci Eng A355:154–159

    Google Scholar 

  6. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50:1–78

    Article  MATH  Google Scholar 

  7. Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51(16):4791–4801 DOI 10.1016/S1359-6454(03)00319-7

    Article  Google Scholar 

  8. Prime MB, Gnaupel-Herold T, Baumann JA, Lederich RJ, Bowden DM, Sebring RJ (2006) Residual stress measurements in a thick, dissimilar aluminium alloy friction stir weld. Acta Mater 54:4013–4021 DOI 10.1016/j.actamat.2006.04.034

    Article  Google Scholar 

  9. Liu S, Chao YJ (2005) Determination of global mechanical response of friction stir welded plates using local constitutive properties. Model Simul Mater Sci Eng 13:1–15 DOI 10.1088/0965-0393/13/1/001

    Article  Google Scholar 

  10. Fratini L, Buffa G, Hua J, Shivpuri R (2006) Friction stir welding of tailored blanks: investigation on process feasibility. Ann CIRP 55/1:279–282

    Google Scholar 

  11. Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43:605–615 DOI 10.1016/S0890-6955(03)00022-1

    Article  Google Scholar 

  12. Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng 12:143–157 DOI 10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  13. Chen CM, Kovacevic R (2003) Finite element modeling of friction stir welding - thermal and thermomechanical analysis. Int J Mach Tools Manuf 43:1319–1326 DOI 10.1016/S0890-6955(03)00158-5

    Article  Google Scholar 

  14. Deng X, Xu S (2001) Solid mechanics simulation of friction stir welding process. Transaction of NAMRI/SME, SME 29:631–638

    Google Scholar 

  15. Zhang HW, Zhang Z, Chen JT (2005) The finite element simulation of the friction stir welding process. Mater Sci Eng A 403:340–348 DOI 10.1016/j.msea.2005.05.052

    Article  Google Scholar 

  16. Barcellona A, Buffa G, Fratini L (2004) Process parameters analysis in friction stir welding of AA6082-T6 sheets, keynote paper of the VII ESAFORM Conference, Trondhaim, pp. 371–374

  17. Ricciardi B, Montanari R, Moreschi LF, Sili A, Storai S (2001) Mechanical characterisation of fusion materials by indentation test. Fusion Eng Des 58–59:755–759 DOI 10.1016/S0920-3796(01)00561-0

    Article  Google Scholar 

  18. Scibetta M, Lucon E, Chaouadi R, van Walle E (2003) Instrumented hardness testing using a flat punch. Int J Press Vessels Piping 80:345–349 DOI 10.1016/S0308-0161(03)00077-2

    Article  Google Scholar 

  19. Taljat B, Zacharia T (1998) New analytical procedure to determine stress-strain curve from spherical indentation data. Int J Solids Struct 35:4411–4426 DOI 10.1016/S0020-7683(97)00249-7

    Article  MATH  Google Scholar 

  20. Zienkiewicz OC, Taylor RL (eds), The finite element Method, fourth ed., McGraw-Hill, UK, 1991

  21. Borino G, Fuschi P, Polizzotto C (1996) Elastic-plastic-damage constitutive models with coupling internal variables. Mech Res Commun 23(1):19–28 DOI 10.1016/0093-6413(95)00072-0

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livan Fratini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borino, G., Fratini, L. & Parrinello, F. Mode I failure modeling of friction stir welding joints. Int J Adv Manuf Technol 41, 498–503 (2009). https://doi.org/10.1007/s00170-008-1498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1498-1

Keywords

Navigation