Advertisement

Integration of thermo-dynamic spindle and machining simulation models for a digital machining system

  • Hongqi Li
  • Yung C. Shin
ORIGINAL ARTICLE

Abstract

A digital machining system is a core subsystem of a virtual machining system at the lowest level, and it provides physical attributes of both the machining process and machine tool to the upper application level. A digital machining system based on mechanistic models is developed. An expandable general base model is built in the system and the interfaces for extending to upper level models are provided for easy integration. The system consists of many integrative dynamic machining process simulation models including milling, turning, boring and grinding. The development of the digital machining system is completed by integrating a spindle analysis model through a modular interface using modal superposition methods. The digital machining system is evaluated in aspects of determining spindle related machining process constraints, predicting spindle condition-dependent chatter boundaries and selecting cutting tools.

Keywords

Digital machining system Mechanistic modeling Simulation Virtual machining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehmann KF, DeVor R, DeMeter E, Dornfeld D, Kapoor S, Ni J, Rajurkar K, Shin Y, Sutherland J (1997) A framework for a virtual machine tool (VMT). Transactions NAMRI/SME 25:143–148Google Scholar
  2. 2.
    Kimura F (1993) Product and process modelling as a kernel for virtual manufacturing environment. CIRP Ann 42:147–150CrossRefGoogle Scholar
  3. 3.
    Koenigsberger R, Sabberwal AJP (1961) An investigation into the cutting force pulsations dring milling operations. Int J Mach Tool Des Res 1:15–33CrossRefGoogle Scholar
  4. 4.
    Budak E, Altintas Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. Trans ASME, J Eng Ind 118:216–223CrossRefGoogle Scholar
  5. 5.
    Shin YC, Waters AJ (1997) An improved method to determine cutting force coefficients for mechanistic modeling of machining processes. Int J Mach Tools Manufact 37:1337–1351CrossRefGoogle Scholar
  6. 6.
    Fu HJ, DeVor RE, Kapoor SG (1984) A mechanistic model for the prediction of the force system in face milling operations. Trans ASME, J Eng Ind 106(1):81–88Google Scholar
  7. 7.
    Shin YC, Waters AJ (1994) Face milling process modeling with structural nonlinearity. Trans NAMRI/SME 22:157–163Google Scholar
  8. 8.
    Kline WA, DeVor RE, Lindberg JR (1982) The prediction of cutting forces in end milling with application to cornering cuts. Int J Mach Tool Des Res 22:7–22CrossRefGoogle Scholar
  9. 9.
    Campomanes M, Altintas Y (2001) An improved time domain simulation for dynamic milling at small radial immersions and large depth of cut. Proc 2001 ASME IMECE, New York, NY, MED 12:39–47Google Scholar
  10. 10.
    Li H, Shin YC (2006) A comprehensive dynamic end milling simulation model. Trans ASME, J Manuf Sci Eng 128(1):86–95CrossRefMathSciNetGoogle Scholar
  11. 11.
    Feng HS, Meng CH (1994) The prediction of cutting forces in the ball-end milling processes I. Model formulation and model building procedure. Int J Mach Tools Manufact 34:697–710CrossRefGoogle Scholar
  12. 12.
    Altintas Y, Lee P (1998) Mechanics and dynamics of ball end milling. Trans ASME, J Manuf Sci Eng 120:684–692CrossRefGoogle Scholar
  13. 13.
    Endres WJ, Sutherland JW, DeVor RE, Kapoor SG (1990) A dynamic model of the cutting force system in the turning process. Proc Monitoring and Control for Manufacturing Processes ASME PED 44:193–212Google Scholar
  14. 14.
    Rao B, Shin YC (1999) A comprehensive dynamic cutting force model for chatter prediction in turning. Int J Mach Tool & Manu 39(10):1631–1654CrossRefGoogle Scholar
  15. 15.
    Clancy BE, Shin YC (2002) A comprehensive chatter prediction model for face turning operation including the tool wear effect. Int J Mach Tool & Manu 42:1035–1044CrossRefGoogle Scholar
  16. 16.
    Zhang GM, Kapoor SG (1987) Dynamic modeling and analysis of the boring machining system. Trans ASME, J Manuf Sci Eng 109:219–226Google Scholar
  17. 17.
    Rao B (2002) Modeling and analysis of high speed machining of aerospace alloys, Ph.D. Dissertation, Purdue UniversityGoogle Scholar
  18. 18.
    Bayly PV, Mentzler SA, Schaut AJ, Young KA (2001) Theory of torsional chatter in twist drills: Model, stability analysis and composition to test. Trans ASME, J Manuf Sci Eng 123:552–561CrossRefGoogle Scholar
  19. 19.
    Li H, Shin YC (2006) A time-domain dynamic model for chatter prediction of cylindrical plunge grinding processes. Trans ASME, J Manuf Sci Eng 128(2):404–415CrossRefGoogle Scholar
  20. 20.
    Li H, Shin YC (2006) Wheel regenerative chatter of surface grinding. Trans ASME, J Manuf Sci Eng 128(2):393–403CrossRefGoogle Scholar
  21. 21.
    Li H, Shin YC (2007) A time domain dynamic simulation model for stability prediction of infeed centerless grinding processes. Trans ASME, J Manuf Sci Eng 129(3):539–550CrossRefGoogle Scholar
  22. 22.
    Tani G, Bedini R, Fortunato A, Mantega C (2005) Dynamic hybrid modeling of the vertical z axis in an HSM machining center towards virtual machining, ASME DETC2005-84810Google Scholar
  23. 23.
    Gagnol V, Bourzgarrou BC, Ray P, Barra C (2007) Stability-based spindle design optimization. Trans ASME, J Manuf Sci Eng 129(2):407–415CrossRefGoogle Scholar
  24. 24.
    Shin YC (1992) Bearing non-linearity and stability analysis in high speed machining. Trans ASME, J Eng Ind 114(1):23–30Google Scholar
  25. 25.
    Wang KF, Shin YC, Chen CH (1991) On the natural frequencies of high-speed spindles with angular contact bearings. Proc Institution of Mechanical Engineers, Part C: J Mech Eng Sci 205(C3):147–154Google Scholar
  26. 26.
    Chen CH, Wang KW, Shin YC (1994a) An integrated approach toward the modeling and dynamic analysis of high speed spindles - part I: System model. Trans ASME, J Vib Acoust 116:506–513CrossRefGoogle Scholar
  27. 27.
    Chen CH, Wang KW (1994b) An integrated approach toward the modeling and dynamic analysis of high speed spindles - part II: Dynamics under moving end load. Trans ASME, J Vib Acoust 116:514–522CrossRefGoogle Scholar
  28. 28.
    Tian J, Hutton SG (2001) Chatter instability in milling systems with flexible rotating spindles-a new theoretical approach. Trans ASME, J Manuf Sci Eng 123:1–9CrossRefGoogle Scholar
  29. 29.
    Shaw MC (1996) Principles of abrasive processing. OxfordGoogle Scholar
  30. 30.
    Shuzi Y (1981) A study of the static stiffness of machine tool spindles. Int J Mach Tool Des Res 21(1):23–40CrossRefGoogle Scholar
  31. 31.
    Al-Shareef KJH, Brandon JA (1990b) On the effects of variation in the design parameters on the dynamic performance of machine tool spindle-bearing system. Int J Mach Tool Manufact 30(3):431–445CrossRefGoogle Scholar
  32. 32.
    Jorgensen BR, Shin YC (1997) Dynamics of machine tool spindle/bearing systems under thermal growth. Trans ASME, J Tribol 119(4):875–882CrossRefGoogle Scholar
  33. 33.
    Jorgensen BR, Shin YC (1998) Dynamics of spindle-bearing systems at high speeds including cutting load effects. Trans ASME, J Manuf Sci Eng 120:387–394CrossRefGoogle Scholar
  34. 34.
    DeMul JM, Vree JM, Maas DA (1989) Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction - part I: General theory and application to ball bearings. Trans ASME, J Tribol 111:149–155CrossRefGoogle Scholar
  35. 35.
    Li H, Shin YC (2004) Integrated dynamic thermo-mechanical modeling of high speed spindles, part 1: Model development. Trans ASME, J Manuf Sci Eng 126:148–158CrossRefGoogle Scholar
  36. 36.
    Li H, Shin YC (2004) Integrated dynamic thermo-mechanical modeling of high speed spindles, part 2: Solution procedure and validations. Trans ASME, J Manuf Sci Eng 126(1):159–167zbMATHCrossRefGoogle Scholar
  37. 37.
    Li H, Shin YC (2004) Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model. Int J Mach Tool Manufact 44(4):347–364CrossRefGoogle Scholar
  38. 38.
    Hong SW, Shamine DM, Shin YC (1999) An in-situ identification method for joint parameters in mechanical structures. Transactions ASME, J Vib Acoust 121(3):363–372 JulyCrossRefGoogle Scholar
  39. 39.
    Shamine DM, Shin YC (1999) Effects of axial and radial loading on no. 50 taper joint stiffness. Trans North Am Manuf Res Inst SME 27:111–116 MayGoogle Scholar
  40. 40.
    Cao Y, Altintas (2007) Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations. Int J Mach Tools Manuf 47:1342–1350Google Scholar
  41. 41.
    Erturk A, Budak E, Ozguven HN (2007) Selection of design and operational parameters in spindle-holder-tool assemblies for maximum chatter stability by using a new analytical model. Int J Mach Tool Manufact 47:1401–1409CrossRefGoogle Scholar
  42. 42.
    Shin YC, Waters AJ (1998) Framework for a machining advisory system with application to facemilling operation. J Intell Manuf 9(3):225–234CrossRefGoogle Scholar
  43. 43.
    Nelson HD (1980) A finite rotating shaft element using Timoshenko beam theory. Trans ASME, J Mech Des 102:793–803CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations