Skip to main content
Log in

The application of Taguchi’s method in the experimental investigation of the laser sintering process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The selective laser sintering (SLS) of iron powder has been investigated through a number of experiments statistically planned as per Taguchi L8 design. Seven input parameters, namely, laser peak power density, laser pulse on-time, laser scan speed, stepping distance (distance traveled between pulses), interval–spot ratio (ratio of laser scan line interval and laser spot diameter), size range of iron powder particles, and powder layer thickness, were selected for the investigation. Density, porosity, and hardness were considered for the characterization of the sintered samples. Analysis of the results show that these properties are significantly affected by these factors. A discussion on the probable physical phenomena contributing to such dependence and an attempt towards the optimization of the process have also been included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ho HCH, Cheung WL, Gibson I (2002) Effects of graphite powder on the laser sintering behaviour of polycarbonate. Rapid Prototyping Journal 8:233–242

    Article  Google Scholar 

  2. Zhu HH, Lu L, Fuh JYH (2003) Development and characterisation of direct laser sintering Cu-based metal powder. J Mater Process Technol 140:314–317

    Article  Google Scholar 

  3. Steen WM (1998) Laser material processing, 2nd edn. Springer, London, UK

    Google Scholar 

  4. Das S, Fuesting TP, Danyo G, Brown LE, Beaman JJ, Bourell DL (2000) Direct laser fabrication of superalloy cermet abrasive turbine blade tips. Mater Des 21:63–73

    Google Scholar 

  5. Kathuria YP (1999) Microstructuring by selective laser sintering of metallic powder. Surf Coat Technol 116–119:643–647

    Article  Google Scholar 

  6. Tolochko NK, Laoui T, Khlopkov Y, Mozzharov S, Titov V, Ignatiev M (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J 6:155–161

    Article  Google Scholar 

  7. Duley WW (1986) Laser surface treatment of metals. NATO-ASI Series (E) 115:3–15

    Google Scholar 

  8. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J (1995) Direct selective laser sintering of metals. Rapid Prototyping J 1:26–36

    Article  Google Scholar 

  9. Bourell DL, Marcus HL, Barlow JW, Beaman JJ (1992) Selective laser sintering of metals and ceramics. Int J Powder Metall 28:369–381

    Google Scholar 

  10. Kumar S (2003) Selective laser sintering: a qualitative and objective approach. JOM 55:43–47

    Article  Google Scholar 

  11. Pham DT, Dimov SS, Lacan F (2000) The RapidTool process: technical capabilities and applications. Proc Inst Mech Eng B 214:107–116

    Article  Google Scholar 

  12. Niu HJ, Chang ITH (1999) Selective laser sintering of gas and water atomized high speed steel powders. Scripta Mater 41:25–30

    Article  Google Scholar 

  13. Kathuria YP (2000) Metal rapid prototyping via a laser generating/selective sintering process. Proc Inst Mech Eng B 214:1–9

    Article  Google Scholar 

  14. Schueren BVD, Kruth J-P (1995) Powder deposition in selective metal powder sintering. Rapid Prototyping J 1:23–31

    Article  Google Scholar 

  15. Song Y (1997) Experimental study of the basic process mechanism for direct selective laser sintering of low-melting metallic powder. Ann CIRP 46:127–130

    Google Scholar 

  16. Williams JD, Deckard CR (1998) Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping J 4:90–100

    Article  Google Scholar 

  17. O’Neill W, Sutcliffe C J, Morgan R, Landsborough A, Hon KKB (1999) Investigation on multi-layer direct metal laser sintering of 316 L stainless steel powder beds. Ann CIRP 48:151–154

    Article  Google Scholar 

  18. Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M (2001) The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol 111:210–213

    Article  Google Scholar 

  19. Murali K, Chatterjee AN, Saha P, Palai R, Kumar S, Roy SK, Mishra PK, Roy Choudhury A (2003) Direct selective laser sintering of iron-graphite powder mixture. J Mater Process Technol 136:179–185

    Article  Google Scholar 

  20. Simchi A, Pohl H (2003) Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater Sci Eng A 359:119–128

    Article  Google Scholar 

  21. Simchi A, Petzoldt F, Pohl H (2003) On the development of direct metal laser sintering for rapid tooling. J Mater Process Technol 141:319–328

    Article  Google Scholar 

  22. Chatterjee AN, Saha P, Kumar S, Mishra PK, Roy Choudhury A (2003) An experimental design approach to selective laser sintering of low carbon steel. J Mater Process Technol 136:151–157

    Article  Google Scholar 

  23. Dingal S, Pradhan TR, Sundar S, Roy Choudhury A, Roy SK (2004) Experimental investigation of selective laser sintering of iron powder by application of Taguchi method. In: Proceedings of the 2004 Laser Assisted Net Shape Engineering conference (LANE 2004), Erlangen, Germany, September 2004, pp 445–456

  24. Miller D, Deckard C, Williams J (1997) Variable beam size SLS workstation and enhanced SLS model. Rapid Prototyping J 3:4–11

    Article  Google Scholar 

  25. Hardro PJ, Wang J-H, Stucker BE (1999) Determining the parameter settings and capability of a rapid prototyping process. Int J Ind Eng—Theory 6:203–213

    Google Scholar 

  26. Yang H-J, Hwang P-J, Lee S-H (2002) A study on shrinkage compensation of the SLS process by using the Taguchi method. Int J Mach Tool Manu 42:1203–1212

    Article  Google Scholar 

  27. Reddy TAJ, Kumar YR, Rao CSP (2006) Determination of optimum process parameters using Taguchi’s approach to improve the quality of SLS parts. In: Proceedings of the 17th IASTED International Conference on Modelling and Simulation (MS 2006), Montreal, Quebec, Canada, May 2006, pp 228–233

  28. Dongdong G, Shen Y (2007) Effects of dispersion technique and component ratio on densification and microstructure of multi-component Cu-based metal powder in direct laser sintering. J Mater Process Technol 182:564–573

    Article  Google Scholar 

  29. Kruth J-P, Froyen L, Kumar S, Rombouts M, Van Vaerenbergh J (2004) Study of laser-sinterability of iron-based powder mixture. In: Proceedings of the 10th European Forum on Rapid Prototyping, Paris, France, September 2004, pp S3–S8

  30. Kruth J-P, Kumar S (2005) Statistical analysis of experimental parameters in selective laser sintering. Adv Eng Mater 7:750–755

    Article  Google Scholar 

  31. Kumar S, Kruth J-P (2007) Effect of bronze infiltration into laser sintered metallic parts. Mater Design 28:400–407

    Article  Google Scholar 

  32. Wang XC, Laoui T, Bonse J, Kruth J-P, Lauwers B, Froyen L (2002) Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol 19:351–357

    Article  Google Scholar 

  33. Childs THC, Hauser C, Taylor CM, Tontowi AE (2000) Simulation and experimental verification of crystalline polymer and direct metal selective laser sintering. In: Proceedings of the 11th Annual Solid Freeform Fabrication Symposium, Austin, Texas, August 2000, pp 100–109

  34. Dongdong G, Shen Y (2006) WC–Co particulate reinforcing Cu matrix composites produced by direct laser sintering. Mater Lett 60:3664–3668

    Article  Google Scholar 

  35. Maeda K, Childs THC (2004) Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. J Mater Process Technol 149:609–615

    Article  Google Scholar 

  36. Kolosov S, Vansteenkiste G, Boudeau N, Gelin JC, Boillat E (2006) Homogeneity aspects in selective laser sintering (SLS). J Mater Process Technol 177:348–351

    Article  Google Scholar 

  37. Simchi A (2006) Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A 428:148–158

    Article  Google Scholar 

  38. Zhu HH, Fuh JYH, Lu L (2007) The influence of powder apparent density on the density in direct laser-sintered metallic parts. Int J Mach Tool Manu 47:294–298

    Article  Google Scholar 

  39. Kruth J-P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622

    Article  Google Scholar 

  40. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24:3115–3123

    Article  Google Scholar 

  41. Chua CK, Leong KF, Tan KH, Wiria FE, Cheah CM (2004) Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci—Mater Med 15:1113–1121

    Article  Google Scholar 

  42. Tan KH, Chua CK, Leong KF, Naing MW, Cheah CM (2005) Fabrication and characterisation of 3D polyetherketone/hydroxyapatite biocomposite scaffolds using laser sintering Proc Inst Mech Eng H 219:183–194

    Google Scholar 

  43. Naing MW, Chua CK, Leong KF, Wang Y (2005) Fabrication of customized scaffolds using computer aided design and rapid prototyping techniques. Rapid Prototyping J 11:249–259

    Article  Google Scholar 

  44. Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-ε-caprolatone/hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. Acta Biomater 3:1–12

    Article  Google Scholar 

  45. Wiria FE, Chua CK, Leong KF, Quah ZY, Chandrasekaran M, Lee MW (2007) Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffolds fabrication using selective laser sintering. J Mater Sci—Mater Med (in press)

  46. Simpson RL, Wiria FE, Amis AA, Chua CK, Leong KF, Hansen UN, Chandrasekaran M, Lee MW (2007) Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B—Appl Biomater (in press)

  47. Tan KH, Chua CK, Leong KF, Cheah CM, Gui WS, Tan WS, Wiria FE (2005) Selective laser sintering of biocompatible polymers for applications in issue engineering. Biomed Mater Eng 15:113–124

    Google Scholar 

  48. Leong KF, Chua CK, Gui WS, Verani (2006) Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Tech 31:483–489

    Article  Google Scholar 

  49. Cheah CM, Leong KF, Chua CK, Low KH, Quek HS (2002) Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H 216(6):369–383

    Article  Google Scholar 

  50. Leong KF, Wiria FE, Chua CK, Li SH (2007) Characterization of a poly-ε-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng 17:147–157

    Google Scholar 

  51. Cochran WG, Cox GM (1992) Experimental designs, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  52. Ross RJ (1989) Taguchi techniques for quality engineering. McGraw-Hill, New York

    Google Scholar 

  53. Ryan NE (1988) Taguchi methods and QFD: hows and whys for management. ASI Press, Dearborn, Michigan

    Google Scholar 

  54. Peace GS (1992) Taguchi methods: a hands-on approach. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  55. Lenel FV (1980) Powder metallurgy—principles and applications. Metal Powder Industries Federation, Princeton, New Jersey

    Google Scholar 

  56. Svoboda J, Riedel H (1995) Quasi-equilibrium sintering for coupled grain-boundary and surface diffusion. Acta Mater 43:499–506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roy Choudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dingal, S., Pradhan, T.R., Sundar, J.K.S. et al. The application of Taguchi’s method in the experimental investigation of the laser sintering process. Int J Adv Manuf Technol 38, 904–914 (2008). https://doi.org/10.1007/s00170-007-1154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-007-1154-1

Keywords

Navigation