Skip to main content
Log in

An optimal-elementary-siphons-based iterative deadlock prevention policy for flexible manufacturing systems

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Petri nets have been proved to be a tool with prominent capabilities to describe discrete event systems, such as flexible manufacturing systems (FMS), thanks to their excellent properties over other models. Characterization in terms of special structural elements in a Petri net called siphons has been a major approach for the investigation of deadlock-freeness in context of FMS. Utilizing the optimal elementary siphons and the modified mixed integer programming (MIP) algorithm proposed in this paper, one can detect and solve deadlock problems arising in FMS in an iterative mode with tractable computational complexity. Moreover, the MIP approach can be exploited to implement the flexibility enhancement in the resultant net system so that the obtained system is less restricted. In contrast to the conventional typical policies, this approach evolves without explicitly enumerating all the strict minimal siphons. Its legitimacy and feasibility are proved and validated through an experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viswanadham N, Narahari Y, Johnson TL (1990) Deadlock prevention and deadlock avoidance in flexible manufacturing systems using Petri net models. IEEE Trans Robot Autom 6(6):713–723

    Article  Google Scholar 

  2. Banaszak ZA, Krogh BH (1990) Deadlock avoidance in flexible manufacturing systems with concurrently competing process flows. IEEE Trans Robot Autom 6(6):724–734

    Article  Google Scholar 

  3. Ezpeleta J, Colom JM, Martínez J (1995) A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Trans Robot Autom 11(2):173–184

    Article  Google Scholar 

  4. Park J, Reveliotis SA (2001) Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings. IEEE Trans Automat Contr 46(10):1572–1583

    Article  MATH  MathSciNet  Google Scholar 

  5. Fanti MP, Zhou MC (2004) Deadlock control methods in automated manufacturing systems. IEEE Trans Syst Man Cybern Part A 34(1):5–22

    Article  Google Scholar 

  6. Wysk RA, Yang NS, Joshi S (1994) Resolution of deadlocks in flexible manufacturing systems: avoidance and recovery approaches. J Manuf Syst 13(2):128–136

    Article  Google Scholar 

  7. Cho H, Kumaran TK, Wysk RA (1995) Graph-theoretic deadlock detection and resolution for flexible manufacturing systems. IEEE Trans Robot Autom 11(3):413–421

    Article  Google Scholar 

  8. Lawley MA, Reveliotis SA, Ferreira PM (1997) Design guidelines for deadlock handling strategies in flexible manufacturing systems. Int J Flex Manuf Syst 9(7):5–30

    Article  Google Scholar 

  9. Lawley MA, Reveliotis SA, Ferreira PM (1998) A correct and scalable deadlock avoidance policy for flexible manufacturing systems. IEEE Trans Robot Autom 14(5):796–809

    Article  Google Scholar 

  10. Chu F, Xie XL (1997) Deadlock analysis of Petri nets using siphons and mathematical programming. IEEE Trans Robot Autom 13(6):793–804

    Article  Google Scholar 

  11. Huang YS, Jeng MD, Xie XL, Chung SL (2001) Deadlock prevention policy based on Petri nets and siphons. Int J Prod Res 39(2):283–305

    Article  MATH  Google Scholar 

  12. Jeng MD, DiCesare F (1995) Synthesis using resource control nets for modeling shared-resource system. IEEE Trans Robot Autom 11(3):317–327

    Article  Google Scholar 

  13. Jeng MD, Xie XL (1999) Analysis of modularly composed nets by siphons. IEEE Trans Syst Man Cybern Part A 29(4):399–406

    Article  Google Scholar 

  14. Jeng MD (1997) A Petri net synthesis theory for modeling flexible manufacturing systems. IEEE Trans Syst Man Cybern Part A 27(2):169–183

    Article  MathSciNet  Google Scholar 

  15. Jeng MD, Xie XL, Peng MY (2002) Process nets with resources for manufacturing modeling and their analysis. IEEE Trans Robot Autom 18(6):875–889

    Article  Google Scholar 

  16. Li ZW, Zhou MC (2004) Elementary siphons of Petri net and their application to deadlock prevention for flexible manufacturing systems. IEEE Trans Syst Man Cybern Part A 34(1):38–51

    Article  Google Scholar 

  17. Reveliotis SA, Lawley MA (1997) Polynomial complexity deadlock avoidance policies for sequential resource allocation systems. IEEE Trans Automat Contr 42(10):1344–1357

    Article  MATH  MathSciNet  Google Scholar 

  18. Reveliotis SA, Ferreira PM (1996) Deadlock avoidance policies for automated manufacturing cells. IEEE Trans Robot Autom 12(6):845–857

    Article  Google Scholar 

  19. Li ZW, Hu HS, Zhou MC (2004) An algorithm for an optimal set of elementary siphons in Petri nets for deadlock control. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Hague, Netherlands, October 10–13, pp 4849–4854

  20. Xing KY, Hu BS, Chen HX (1996) Deadlock avoidance policy for Petri net modeling of flexible manufacturing systems with shared resources. IEEE Trans Automat Contr 41(2):289–295

    Article  MATH  MathSciNet  Google Scholar 

  21. Uzam M (2002) An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with reosurces and the theory of regions. Int J Adv Manuf Technol 19(3):192–208

    Google Scholar 

  22. Uzam M, Wonham WM (2006) A hybrid approach to supervisory control of discrete event systems coupling RW supervisors to Petri nets. Int J Adv Manuf Technol 28(7–8):747–760

    Article  Google Scholar 

  23. Uzam M, Wonham WM (2006) A hybrid approach to supervisory control of discrete event systems coupling RW supervisors to Petri nets. Int J Adv Manuf Technol 28(7–8):747–760

    Article  Google Scholar 

  24. Uzam M (2004) The use of Petri net reduction approach for an optimal deadlock prevention policy for flexible manufacturing systems. Int J Adv Manuf Technol 23(3–4):204–219

    Article  Google Scholar 

  25. Abdallah IB, ElMaraghy HA (1998) Deadlock prevention and avoidance in FMS: a Petri net based approach. Int J Adv Manuf Technol 14(10):704–715

    Article  Google Scholar 

  26. Iordache MV, Antsaklis PJ (2003) Synthesis of supervisors enforcing general linear constraints in Petri nets. IEEE Trans Automat Contr 48(11):2036–2039

    Article  MathSciNet  Google Scholar 

  27. Yamalidou K, Moody JO, Lemmon MD, Antsaklis PJ (1996) Feedback control of Petri nets based on place invariants. Antomatica 32(1):15–28

    Article  MATH  MathSciNet  Google Scholar 

  28. Moody JO, Antsaklis PJ (2000) Petri net supervisors for DES with uncontrollable and unobservable transitions. IEEE Trans Automat Contr 45(3):462–476

    Article  MATH  MathSciNet  Google Scholar 

  29. Iordache MV, Antsaklis PJ (2003) Design of T-liveness enforcing supervisors in Petri nets. IEEE Trans Automat Contr 48(11):1962–1974

    Article  MathSciNet  Google Scholar 

  30. Iordache MV, Moody JO, Antsaklis PJ (2002) Synthesis of deadlock prevention supervisors using Petri nets. IEEE Trans Robot Autom 18(1):59–68

    Article  Google Scholar 

  31. Ezpeleta J, Tricas F, García-vallés F, Colom JM (2002) A banker’s solution for deadlock avoidance in FMS with flexible routing and multiresources states. IEEE Trans Robot Autom 18(4):621–625

    Article  Google Scholar 

  32. Murata T (1989) Petri nets: properties, analysis and application. Proc IEEE 77(4):541–580

    Article  Google Scholar 

  33. Scharge L (2004) Optimization modeling with LINGO. Lindo Systems Inc., Chicago, IL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesuan Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Li, Z. An optimal-elementary-siphons-based iterative deadlock prevention policy for flexible manufacturing systems. Int J Adv Manuf Technol 38, 309–320 (2008). https://doi.org/10.1007/s00170-007-1110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-007-1110-0

Keywords

Navigation