Adriaens H, Koning WL, Banning R (2000) Modeling piezoelectric actuators.” IEEE ASME Trans Mechatron 5(4):331–341
Article
Google Scholar
Angeles J, Morozov A, Slutski L, Navarro O, Jabre L (2000) The modular design of a long-reach, 11-axis manipulator,” Proc. 2000 CISM-IFToMM Symposium on Robots and Manipulators, Zakopane, Poland, July 3–6:225–233
Carricato M, Castelli VP, Duffy J (2001) Inverse static analysis of a planar system with flexural pivots. J Mech Des” 123(1):43–50
Article
Google Scholar
Carrozza MC, Dario P et al (1998) Manipulating biological and mechanical micro-objects using LIGA-microfabricated end-effectors,” Proceedings of the 1998 IEEE International Conference on Robotics & Automation Leuven, Belgium 1811–1816
Chonan S, Jiang ZW, Koseki M (1996) Soft-handling gripper driven by piezoceramic bimorph strips. Smart Materials and Structures 5:407–414
Article
Google Scholar
Derderian JM, Howell LL, Murphy MD, Lyon SM, Pack SD (1996) Compliant parallel-guiding mechanisms,” Proceedings of the 1996 ASME Design Engineering Technical conferences and Computers in Engineering Conference, August, 18–22, pp. 1–12
Dessau KD, Arnone D (1999) Novel actuators achieve greater stability and precision,” Laser Focus World 189–195 May
Du H, Su C, Lim MK, Jin WL (1999) Micromachined thermally-driven gripper: a numerical and experimental study. Smart Materials and Structures 8(5):616–622
Article
Google Scholar
Ejima S et al (2000) Optimal structural design of compliant mechanisms. JSME International Journal, Series A 43(2):130–137
Google Scholar
Ervin JD, Brei D (1992) Recurve piezoelectric-strain-amplifying actuator architecture. IEEE ASME Trans Mechatron 3(4):293–301
Article
Google Scholar
Fite K, Goldfarb M (1999) Sensorless velocity estimation for control of A compliant mechanism-based micromanipulator,” Proceedings of the ASME Dynamic Systems and Control Division, 67:891–896
Fite K, Goldfarb M (1999) Position control of a compliant mechanism based micromanipulator,” Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, pp. 2122–2127
Frecker MI et al (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization,” J Mech Des, 119(2)238–245
Google Scholar
Frecker M, Kikuchi N, Kota S (1999) Topology optimization of compliant mechanisms with multiple outputs” Structural Optimization 17:269–278
Google Scholar
Furukawa E, Mizuno M (1992) Piezo-driven translation mechanisms utilizing linkages”, Int J Japan Soc Proc Eng 26(1):54–59
Google Scholar
Goldfarb M, Celanovic N (1999) A flexure-based gripper for small-scale manipulation,” Robotica 17:181–187
Google Scholar
Goldfarb M, Speich JE (1999) A well-behaved revolute flexure joint for compliant mechanism design. J Mech Des 121(3):424–429
Article
Google Scholar
Hara A, Sugimoto K (1989) Synthesis of parallel micromanipulators”. ASME Trans. Journal of Mechanisms, Transmissions, and Automation in Design 111:34–39
Google Scholar
Her I, Chang JC (1994) A linear scheme for the displacement analysis of micropositioning stages with flexure hinges”. Trans ASME J Mech Des 116:770–776
Article
Google Scholar
Hetrick JA, Kikuchi N, Kota S (1999) Robustness of compliant mechanism topology optimization formulations. The SPIE conference on Mathematics and Control in Smart Structures, SPIE 3667:244–254
Google Scholar
Hodac A, Siegwart R (1999) A decoupled macro/micro-manipulator for fast and precise assembly operations: design and experiment,” Proc. of SPIE’s International Symposium on Intelligent Systems and Ad-vanced Manufacturing, Boston, Massachusetts, USA Vol. 3834–16
Hogan N, Sharon A, Hardt ED (1988) High bandwidth force regulation and inertia reduction using a macro/micro manipulator system,” Proc. of IEEE Conf. on Robotics and Automation, pp. 126–132
Nogimori W, Irisa K, Ando M, Naruse Y (1997) A laser-powered microgripper. Proc. IEEE 10th Ann. Int. Workshop: 267–271
Howell LL, Midha A (1994) A method for the design of compliant mechanisms with Ssmall-length flexural pivots. J Mech Des 116(1):280–290
Article
Google Scholar
Howell LL, Mihda A (1996) A loop-closure theory for the analysis and synthesis of compliant mechanisms. J Mech Des 118(1):121–125
Article
Google Scholar
Howell LL, Midha A, Norton TW (1996) Ion of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms. J Mech Des 118(1):126–131
Article
Google Scholar
Idha A, Norton TW, Howell LL (1994) On the nomenclature, classification, and abstractions of compliant mechanisms. J Mech Des 116(1):270–279
Article
Google Scholar
Ikuta K, Kato T, Nagata S (1998) Optimum designed micro active forceps with built-in fiberscope for retinal microsurgery. MICCAI 1998 411–420
Jensen BD, Howell LL, Gunyan DB, Salmon LG (1997) The design and analysis of compliant MEMS using the pseudo-rigid-body model,” DSC-Vol.62/HTD-Vol.354, Microelectromechanical Systems (MEMS), pp. 119–126
Jensen BD, Howell LL, Salmon LG (1999) Design of two-link, in-plane, bistable compliant micro mechanisms. J Mech Des 121(3):416–423
Article
Google Scholar
Jiang ZH, Goldenberg AA (1998) Dynamic end-effector trajectory control for flexible micro-macro manipulators using an ideal manifold. JSME International Journal, Series C 41(2):269–277
Google Scholar
Jung H, Shim JY, Gweon D (2000) New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Rev Sci Instrum 71(9):3436–3440
Article
Google Scholar
Kallio P, Lind M, Zhou Q, Koivo HN (1998) “A 3 DOF piezohydraulic parallel micromanipulator”. International Conference on Robotics and Automation Leuven, Belgium, May
Kawaji A, Arai F, Fukuda T (1999) Calibration for contact type of micro-manipulation. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems 715–720
Keller CG, Howe RT (1997) Hexsil tweezers for teleoperated microassembly. IEEE Micro Electro Mechanical Systems Workshop, Nagoya, Japan 72–77 Jan
Khatib O (1989) Reduced effective inertia in macro/mini manipulator systems. 1989 Japan-U.S.A. Symposium on Flexible Automation 329–334
Kim CJ, Pisano AP, Muller RS, Lim MG (1992) Polysilicon microgripper. Sensor Actuator A33(3):221–227
Google Scholar
Kota S et al (1994) Design and gabrication of microelectromechanical systems. J Mech Des 116(4):1081–1088
Article
Google Scholar
Kota S, Hetrick I, Li Z, Saggere L (1999) Tailoring unconventional actuators using compliant transmissions: design methods and applications. IEEE ASME Trans Mechatron 4(4):396–408
Article
Google Scholar
Lee KM, Arjunan S (1991) A three-degrees-of-freedom micromotion in-parallel actuated manipulator. IEEE Trans Robot Autom 7(5) 634–641
Article
Google Scholar
Lew JY (1997) Contact control of flexible micro/macro-manipulators. Proceedings of the 1997 IEEE International Conference on Robotics & Automation, Albuquerque, New Mexico 2850–2855
Maas J, Schulte T, Frohleke N (2000) Model-based control for ultrasonic motors. IEEE ASME Trans Mechatron 5(2):165–180
Article
Google Scholar
Millar AJ, Howell LL, Leonard JN (1996) Design and evaluation of compliant constant-force mechanism,” Proceedings of the 1996 ASME Design Engineering Technical conferences and Computers in Engineering Conference 96-DETC/MECH-1209
Ohya Y et al (1999) Development of 3-DOF finger module for micro manipulation. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems 894–899
New Focus (2006) Applications of the picomotor in the semiconductor Industry (online posting)”, New Focus®. <http://www.newfocus.com/Online_Catalog/Literature/apnote6.pdf>
Paros JM, Weisbord L (1965) How to design flexure hinges. Mach Des 37:151–156
Google Scholar
Ryu W, Gweon DG, Moon KS (1997) Optimal design of a flexure hinge based Xyθ wafer stage”. Precis Eng 21:18–28
Article
Google Scholar
Saxena A, Ananthasuresh GK (2001) Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications. J Mech Des 123(1):33–42
Article
Google Scholar
Scire FE, Teague EC (1978) Piezodriven 50-μm range stage with ubnanometer resolution”. Rev Sci Instrum 49(12):1735–1740
Article
Google Scholar
Sharon A, Hogan N, Hardt DE (1993) The macro/micro manipulator: An improved architecture for robot control. Robot Comput Integrated Manuf 10(3):209–222
Article
Google Scholar
Speich J, Goldfarb M (2000) A compliant-mechanism-based three degree-of-freedom manipulator for small-scale manipulation. Robotica 18:95–104
Article
Google Scholar
Suzuki Y (1994) Fabrication and evaluation of flexible microgripper. Journal of Applied Physics 33:2107–2112
Article
Google Scholar
Vliet JV, Sharf I (1998) Development of a planar macro-micro manipulator facility: From design through model validation. CASI Journal 44:40–50
Google Scholar
Xu WL, Yang TW, and Tso SK (2000) Dynamic control of a flexible macro-micro manipulator based on rigid dynamics with flexible state sensing. Mechanism and Machine Theory 35:41–53
MATH
Article
Google Scholar
Yim W, Singh S (1995) Trajectory control of flexible manipulator using macro-micro manipulator system. Proceedings of the 34th Conference on Design & control, New Orleans, LA, pp. 2841–2846
Ouyang PR (2005) Hybrid intelligent machine systems: Design, Modeling and Control, PhD Thesis, University of Saskatchewan
Yoshikawa T, Hosoda K, Harada K, Matsumoto A, Murakami H (1994) Hybrid position/force control of flexible manipulators by macro-micro manipulator system,” Proceedings of 1994 IEEE International Conference on Robotics and Automation 3:2125–2130
Zhang WJ, Zou J, Watson G, Zhao W, Zong GH, Bi SS (2002) Constant Jacobian method for kinematics of a 3-DOF planar micro-motion stage. J Robotic Syst 19(2):63–79
Article
Google Scholar
Zhang Y, Zhang WJ, Hesselbach J, Kerle J (2006) Development of a two-degree-of-freedom piezoelectric rotary-linearly actuator with high driving force and unlimited linear movement. Rev Sci Instrum 77, 035112 (2006) (9 pages)
Google Scholar
Zong GH, Zhang WJ et al (1997) A hybrid serial-parallel mechanism for micro-manipulation. The 5th Applied Mechanisms and Robotics Conference, USA, October, AMR97-050
Zou J, Watson LG, Zhang WJ (2000) On the comparison of the pseudo rigid body model method and the finite element method for a 3DOF planar micro-motion stage,” Proceedings of ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2000/MECH-6513
Applicable electronics-motion control company (http://www.applicableelectronics.com)
PI (Physik Instrumente) company(http://www.physikinstrumente.com)
Eppendorf company (http://www.eppendorf.com)
Piezo systems Inc. (http://www.piezo.com/)
Burleigh Instruments, Inc.(http://www.burleigh.com)
Kyocera Corporation (http://www.kycoera.co.jp)
Darbara Singh & Sons and Olympus India Pvt Ltd.(http://www.dssimage.com)
Sutter Instrument Company (http://www.sutter.com)
Siskiyou Design Instrument Inc.(http://www.sd-instruments.com)
Micro Pulse Systems Inc. (http://www.rain.org/~cwsmps/)
Baldor Company (http://www.baldor.com)
Electromagnetic Micro-manipulator (http://invent.ucsd.edu/tech_available/cases/01-17.htm)
Piezosystem Jena GmbH (Germany) (http://www.piezojena.com/piezo.html)
The New Focus Inc. (http://www.newfocus.com/)
PIEZOMAX Technologies, Inc. (http://www.piezomax.com)