Skip to main content

Micro-motion devices technology: The state of arts review


In this paper we review the world-wide study on micro-motion systems both from an academic and an industrial perspective. The objective of the review is to answer the following questions: (1) What are the limitations of technologies to develop a micro-motion device in terms of function, motion range, accuracy, and speed it can achieve? (2) What is any economic implication of these technologies? (3) What are future research directions? The micro-motion systems considered in this paper are classified into four kinds in terms of their motion ranges: (a) < 1 μm, (b) 1 ∼ 100 μm, (c) 100 ∼ 1000 μm, and (d) > 1000 μm. This review concludes that the PZT actuation element integrated with the compliant mechanism is the most promising technology which can achieve high accuracy (sub-nanometer) of all four kinds of motion ranges. This promise is further based on the amplification technology using the compliant mechanism concept. The amplification mechanism is used to compensate the problem with a limited stroke of the PZT actuation element. The compliant amplification mechanism allows one to achieve a high resolution and high stiffness motion which does not compromise the loss of accuracy due to motion amplification. The PZT actuation element and the compliant mechanism are both economically viable. Future research direction should generally focus on the interface between the PZT actuation element and compliant mechanism and the reliability of the compliant mechanism under cyclic deformation of compliant materials.

This is a preview of subscription content, access via your institution.


  1. Adriaens H, Koning WL, Banning R (2000) Modeling piezoelectric actuators.” IEEE ASME Trans Mechatron 5(4):331–341

    Article  Google Scholar 

  2. Angeles J, Morozov A, Slutski L, Navarro O, Jabre L (2000) The modular design of a long-reach, 11-axis manipulator,” Proc. 2000 CISM-IFToMM Symposium on Robots and Manipulators, Zakopane, Poland, July 3–6:225–233

  3. Carricato M, Castelli VP, Duffy J (2001) Inverse static analysis of a planar system with flexural pivots. J Mech Des” 123(1):43–50

    Article  Google Scholar 

  4. Carrozza MC, Dario P et al (1998) Manipulating biological and mechanical micro-objects using LIGA-microfabricated end-effectors,” Proceedings of the 1998 IEEE International Conference on Robotics & Automation Leuven, Belgium 1811–1816

  5. Chonan S, Jiang ZW, Koseki M (1996) Soft-handling gripper driven by piezoceramic bimorph strips. Smart Materials and Structures 5:407–414

    Article  Google Scholar 

  6. Derderian JM, Howell LL, Murphy MD, Lyon SM, Pack SD (1996) Compliant parallel-guiding mechanisms,” Proceedings of the 1996 ASME Design Engineering Technical conferences and Computers in Engineering Conference, August, 18–22, pp. 1–12

  7. Dessau KD, Arnone D (1999) Novel actuators achieve greater stability and precision,” Laser Focus World 189–195 May

  8. Du H, Su C, Lim MK, Jin WL (1999) Micromachined thermally-driven gripper: a numerical and experimental study. Smart Materials and Structures 8(5):616–622

    Article  Google Scholar 

  9. Ejima S et al (2000) Optimal structural design of compliant mechanisms. JSME International Journal, Series A 43(2):130–137

    Google Scholar 

  10. Ervin JD, Brei D (1992) Recurve piezoelectric-strain-amplifying actuator architecture. IEEE ASME Trans Mechatron 3(4):293–301

    Article  Google Scholar 

  11. Fite K, Goldfarb M (1999) Sensorless velocity estimation for control of A compliant mechanism-based micromanipulator,” Proceedings of the ASME Dynamic Systems and Control Division, 67:891–896

  12. Fite K, Goldfarb M (1999) Position control of a compliant mechanism based micromanipulator,” Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, pp. 2122–2127

  13. Frecker MI et al (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization,” J Mech Des, 119(2)238–245

    Google Scholar 

  14. Frecker M, Kikuchi N, Kota S (1999) Topology optimization of compliant mechanisms with multiple outputs” Structural Optimization 17:269–278

    Google Scholar 

  15. Furukawa E, Mizuno M (1992) Piezo-driven translation mechanisms utilizing linkages”, Int J Japan Soc Proc Eng 26(1):54–59

    Google Scholar 

  16. Goldfarb M, Celanovic N (1999) A flexure-based gripper for small-scale manipulation,” Robotica 17:181–187

    Google Scholar 

  17. Goldfarb M, Speich JE (1999) A well-behaved revolute flexure joint for compliant mechanism design. J Mech Des 121(3):424–429

    Article  Google Scholar 

  18. Hara A, Sugimoto K (1989) Synthesis of parallel micromanipulators”. ASME Trans. Journal of Mechanisms, Transmissions, and Automation in Design 111:34–39

    Google Scholar 

  19. Her I, Chang JC (1994) A linear scheme for the displacement analysis of micropositioning stages with flexure hinges”. Trans ASME J Mech Des 116:770–776

    Article  Google Scholar 

  20. Hetrick JA, Kikuchi N, Kota S (1999) Robustness of compliant mechanism topology optimization formulations. The SPIE conference on Mathematics and Control in Smart Structures, SPIE 3667:244–254

    Google Scholar 

  21. Hodac A, Siegwart R (1999) A decoupled macro/micro-manipulator for fast and precise assembly operations: design and experiment,” Proc. of SPIE’s International Symposium on Intelligent Systems and Ad-vanced Manufacturing, Boston, Massachusetts, USA Vol. 3834–16

  22. Hogan N, Sharon A, Hardt ED (1988) High bandwidth force regulation and inertia reduction using a macro/micro manipulator system,” Proc. of IEEE Conf. on Robotics and Automation, pp. 126–132

  23. Nogimori W, Irisa K, Ando M, Naruse Y (1997) A laser-powered microgripper. Proc. IEEE 10th Ann. Int. Workshop: 267–271

  24. Howell LL, Midha A (1994) A method for the design of compliant mechanisms with Ssmall-length flexural pivots. J Mech Des 116(1):280–290

    Article  Google Scholar 

  25. Howell LL, Mihda A (1996) A loop-closure theory for the analysis and synthesis of compliant mechanisms. J Mech Des 118(1):121–125

    Article  Google Scholar 

  26. Howell LL, Midha A, Norton TW (1996) Ion of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms. J Mech Des 118(1):126–131

    Article  Google Scholar 

  27. Idha A, Norton TW, Howell LL (1994) On the nomenclature, classification, and abstractions of compliant mechanisms. J Mech Des 116(1):270–279

    Article  Google Scholar 

  28. Ikuta K, Kato T, Nagata S (1998) Optimum designed micro active forceps with built-in fiberscope for retinal microsurgery. MICCAI 1998 411–420

  29. Jensen BD, Howell LL, Gunyan DB, Salmon LG (1997) The design and analysis of compliant MEMS using the pseudo-rigid-body model,” DSC-Vol.62/HTD-Vol.354, Microelectromechanical Systems (MEMS), pp. 119–126

  30. Jensen BD, Howell LL, Salmon LG (1999) Design of two-link, in-plane, bistable compliant micro mechanisms. J Mech Des 121(3):416–423

    Article  Google Scholar 

  31. Jiang ZH, Goldenberg AA (1998) Dynamic end-effector trajectory control for flexible micro-macro manipulators using an ideal manifold. JSME International Journal, Series C 41(2):269–277

    Google Scholar 

  32. Jung H, Shim JY, Gweon D (2000) New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Rev Sci Instrum 71(9):3436–3440

    Article  Google Scholar 

  33. Kallio P, Lind M, Zhou Q, Koivo HN (1998) “A 3 DOF piezohydraulic parallel micromanipulator”. International Conference on Robotics and Automation Leuven, Belgium, May

  34. Kawaji A, Arai F, Fukuda T (1999) Calibration for contact type of micro-manipulation. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems 715–720

  35. Keller CG, Howe RT (1997) Hexsil tweezers for teleoperated microassembly. IEEE Micro Electro Mechanical Systems Workshop, Nagoya, Japan 72–77 Jan

  36. Khatib O (1989) Reduced effective inertia in macro/mini manipulator systems. 1989 Japan-U.S.A. Symposium on Flexible Automation 329–334

  37. Kim CJ, Pisano AP, Muller RS, Lim MG (1992) Polysilicon microgripper. Sensor Actuator A33(3):221–227

    Google Scholar 

  38. Kota S et al (1994) Design and gabrication of microelectromechanical systems. J Mech Des 116(4):1081–1088

    Article  Google Scholar 

  39. Kota S, Hetrick I, Li Z, Saggere L (1999) Tailoring unconventional actuators using compliant transmissions: design methods and applications. IEEE ASME Trans Mechatron 4(4):396–408

    Article  Google Scholar 

  40. Lee KM, Arjunan S (1991) A three-degrees-of-freedom micromotion in-parallel actuated manipulator. IEEE Trans Robot Autom 7(5) 634–641

    Article  Google Scholar 

  41. Lew JY (1997) Contact control of flexible micro/macro-manipulators. Proceedings of the 1997 IEEE International Conference on Robotics & Automation, Albuquerque, New Mexico 2850–2855

  42. Maas J, Schulte T, Frohleke N (2000) Model-based control for ultrasonic motors. IEEE ASME Trans Mechatron 5(2):165–180

    Article  Google Scholar 

  43. Millar AJ, Howell LL, Leonard JN (1996) Design and evaluation of compliant constant-force mechanism,” Proceedings of the 1996 ASME Design Engineering Technical conferences and Computers in Engineering Conference 96-DETC/MECH-1209

  44. Ohya Y et al (1999) Development of 3-DOF finger module for micro manipulation. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems 894–899

  45. New Focus (2006) Applications of the picomotor in the semiconductor Industry (online posting)”, New Focus®. <>

  46. Paros JM, Weisbord L (1965) How to design flexure hinges. Mach Des 37:151–156

    Google Scholar 

  47. Ryu W, Gweon DG, Moon KS (1997) Optimal design of a flexure hinge based Xyθ wafer stage”. Precis Eng 21:18–28

    Article  Google Scholar 

  48. Saxena A, Ananthasuresh GK (2001) Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications. J Mech Des 123(1):33–42

    Article  Google Scholar 

  49. Scire FE, Teague EC (1978) Piezodriven 50-μm range stage with ubnanometer resolution”. Rev Sci Instrum 49(12):1735–1740

    Article  Google Scholar 

  50. Sharon A, Hogan N, Hardt DE (1993) The macro/micro manipulator: An improved architecture for robot control. Robot Comput Integrated Manuf 10(3):209–222

    Article  Google Scholar 

  51. Speich J, Goldfarb M (2000) A compliant-mechanism-based three degree-of-freedom manipulator for small-scale manipulation. Robotica 18:95–104

    Article  Google Scholar 

  52. Suzuki Y (1994) Fabrication and evaluation of flexible microgripper. Journal of Applied Physics 33:2107–2112

    Article  Google Scholar 

  53. Vliet JV, Sharf I (1998) Development of a planar macro-micro manipulator facility: From design through model validation. CASI Journal 44:40–50

    Google Scholar 

  54. Xu WL, Yang TW, and Tso SK (2000) Dynamic control of a flexible macro-micro manipulator based on rigid dynamics with flexible state sensing. Mechanism and Machine Theory 35:41–53

    MATH  Article  Google Scholar 

  55. Yim W, Singh S (1995) Trajectory control of flexible manipulator using macro-micro manipulator system. Proceedings of the 34th Conference on Design & control, New Orleans, LA, pp. 2841–2846

  56. Ouyang PR (2005) Hybrid intelligent machine systems: Design, Modeling and Control, PhD Thesis, University of Saskatchewan

  57. Yoshikawa T, Hosoda K, Harada K, Matsumoto A, Murakami H (1994) Hybrid position/force control of flexible manipulators by macro-micro manipulator system,” Proceedings of 1994 IEEE International Conference on Robotics and Automation 3:2125–2130

  58. Zhang WJ, Zou J, Watson G, Zhao W, Zong GH, Bi SS (2002) Constant Jacobian method for kinematics of a 3-DOF planar micro-motion stage. J Robotic Syst 19(2):63–79

    Article  Google Scholar 

  59. Zhang Y, Zhang WJ, Hesselbach J, Kerle J (2006) Development of a two-degree-of-freedom piezoelectric rotary-linearly actuator with high driving force and unlimited linear movement. Rev Sci Instrum 77, 035112 (2006) (9 pages)

    Google Scholar 

  60. Zong GH, Zhang WJ et al (1997) A hybrid serial-parallel mechanism for micro-manipulation. The 5th Applied Mechanisms and Robotics Conference, USA, October, AMR97-050

  61. Zou J, Watson LG, Zhang WJ (2000) On the comparison of the pseudo rigid body model method and the finite element method for a 3DOF planar micro-motion stage,” Proceedings of ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2000/MECH-6513

  62. Applicable electronics-motion control company (

  63. PI (Physik Instrumente) company(

  64. Eppendorf company (

  65. Piezo systems Inc. (

  66. Burleigh Instruments, Inc.(

  67. Kyocera Corporation (

  68. Darbara Singh & Sons and Olympus India Pvt Ltd.(

  69. Sutter Instrument Company (

  70. Siskiyou Design Instrument Inc.(

  71. Micro Pulse Systems Inc. (

  72. Baldor Company (

  73. Electromagnetic Micro-manipulator (

  74. Piezosystem Jena GmbH (Germany) (

  75. The New Focus Inc. (

  76. PIEZOMAX Technologies, Inc. (

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to W. J. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ouyang, P.R., Tjiptoprodjo, R.C., Zhang, W.J. et al. Micro-motion devices technology: The state of arts review. Int J Adv Manuf Technol 38, 463–478 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Micro-motion system
  • Actuator
  • Compliant mechanism
  • Manipulator