Skip to main content
Log in

Formability evaluation of a pure titanium sheet in the cold incremental forming process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Owing to its ability to deform a sheet metal locally, the single point incremental forming (SPIF) process produces larger deformations as compared to the conventional forming processes. In the present study, we investigated the effect of some process parameters – pitch, tool diameter, feed rate and friction at the interface between the tool and blank – on the formability of a commercially-pure titanium sheet. Trends between the process parameters and formability are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Otsu M, Osakada K, Fuji M (2000) Controlled laser forming of sheet metal with shape measurement and using database. Proceedings of the Metal Forming conference, Rotterdam: p 433

  2. Jurisevic B, Heiniger KC, Kuzman K, Junkar M (2003) Incremental sheet metal forming with a high-speed water jet. Proceedings of the International Deep Drawing Research Group (IDDRG): pp 139–148

  3. Filice L, Fratini L (2001) New trends in sheet metal stamping processes. Proceedings of the PRIME Conference: pp 143–148

  4. Matsubara S (1994) Incremental backward bulge forming of a sheet metal with a hemispherical head tool. Journal of the Japan Society for Technology of Plasticity 35:1311

    Google Scholar 

  5. Jeswiet J (2001) Incremental single point forming. Proceedings of the North American Manufacturing Research Institution (NAMRI): p MF01-246

  6. Maki T (2005) Sheet fluid forming and sheet die-less NC forming. Amino Corporation, Japan

    Google Scholar 

  7. Kopac J, Kampus Z (2005) Incremental sheet metal forming on CNC milling machine-tool. J Mater Process Technol 162–163:622–628

    Article  Google Scholar 

  8. Park JJ, Kim Y (2003) Fundamental studies on the incremental sheet metal forming technique. J Mater Process Technol 140:447–453

    Article  Google Scholar 

  9. Wong CC, Dean TA, Lin J (2003) A review of spinning, shear forming and flow forming processes. Int J Mach Tools Manuf 43:1419–1435

    Article  Google Scholar 

  10. Avitzur B, Yang CT (1960) Analysis of power spinning of cones. JEI Trans Am Soc Mech Eng 45:82:231

    Google Scholar 

  11. Leach D, Green AJ, Bramley AN (2001) A new incremental forming process for small batch and prototype parts. Proceedings of the ninth international conference on sheet metal

  12. Amino H, Lu Y, Ozawa S, Fukuda K, Maki T(2002) Die-less NC forming of automotive service panels. Proceedings of the Conference on Advanced Techniques of Plasticity: pp 1015–1020

  13. Livers WB, Pilkey AK, Lloyd DJ (2004) Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys. Acta Mater 52:3001–3007

    Article  Google Scholar 

  14. Ambrogio G, De Napoli L, Filice L, Gagliardi G, Muzzupappa M (2005) Application of incremental forming process for high customized medical product manufacturing. J Mater Process Technol 162–163:156–162

    Article  Google Scholar 

  15. Iseki H, Kumon H (1994) Forming limit of incremental sheet metal stretch forming using spherical rollers. Journal of the Japan Society for Technology of Plasticity 35:1336

    Google Scholar 

  16. Filice L, Frantini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Ann 51/1:199–202

    Article  Google Scholar 

  17. Shim MS, Park JJ (2001) The formability of aluminum sheet in incremental forming. J Mater Process Technol 113:654

    Article  Google Scholar 

  18. Strano M, Carrino L, Ruggiero M (2004), Representation of forming limits for negative incremental forming of thin sheet metals. Proceedings of the International Deep Drawing Research Group (IDDRG): pp 198–207

  19. Kim YH, Park JJ (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130:42–46

    Article  Google Scholar 

  20. Hussain G, Gao L (2007) A novel method to test the thinning limits of sheet-metals in Negative Incremental Forming. Int J Mach Tools Manuf 47:419–435

    Article  Google Scholar 

  21. Hussain G, DAR NU, Gao L, Chen MH (2007) A comparative study on the forming limits of the aluminum sheet in negative incremental forming. J Mater Process Technol 187–188:94–98

    Article  Google Scholar 

  22. Hussain G, Gao L, DAR NU (2007) An experimental study on some formability evaluation methods in negative incremental forming. J Mater Process Technol 186:146–253

    Article  Google Scholar 

  23. Hussain G, Gao L (2006) Fundamental studies on incremental forming of titanium sheet metal. Proceedings of the Manufacturing Science and Engineering Conference: P 10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, G., Gao, L. & Zhang, Z.Y. Formability evaluation of a pure titanium sheet in the cold incremental forming process. Int J Adv Manuf Technol 37, 920–926 (2008). https://doi.org/10.1007/s00170-007-1043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-007-1043-7

Keywords

Navigation