Formability evaluation of a pure titanium sheet in the cold incremental forming process

  • G. HussainEmail author
  • L. Gao
  • Z. Y. Zhang


Owing to its ability to deform a sheet metal locally, the single point incremental forming (SPIF) process produces larger deformations as compared to the conventional forming processes. In the present study, we investigated the effect of some process parameters – pitch, tool diameter, feed rate and friction at the interface between the tool and blank – on the formability of a commercially-pure titanium sheet. Trends between the process parameters and formability are presented in this paper.


Incremental forming Formability Process parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otsu M, Osakada K, Fuji M (2000) Controlled laser forming of sheet metal with shape measurement and using database. Proceedings of the Metal Forming conference, Rotterdam: p 433Google Scholar
  2. 2.
    Jurisevic B, Heiniger KC, Kuzman K, Junkar M (2003) Incremental sheet metal forming with a high-speed water jet. Proceedings of the International Deep Drawing Research Group (IDDRG): pp 139–148Google Scholar
  3. 3.
    Filice L, Fratini L (2001) New trends in sheet metal stamping processes. Proceedings of the PRIME Conference: pp 143–148Google Scholar
  4. 4.
    Matsubara S (1994) Incremental backward bulge forming of a sheet metal with a hemispherical head tool. Journal of the Japan Society for Technology of Plasticity 35:1311Google Scholar
  5. 5.
    Jeswiet J (2001) Incremental single point forming. Proceedings of the North American Manufacturing Research Institution (NAMRI): p MF01-246Google Scholar
  6. 6.
    Maki T (2005) Sheet fluid forming and sheet die-less NC forming. Amino Corporation, JapanGoogle Scholar
  7. 7.
    Kopac J, Kampus Z (2005) Incremental sheet metal forming on CNC milling machine-tool. J Mater Process Technol 162–163:622–628CrossRefGoogle Scholar
  8. 8.
    Park JJ, Kim Y (2003) Fundamental studies on the incremental sheet metal forming technique. J Mater Process Technol 140:447–453CrossRefGoogle Scholar
  9. 9.
    Wong CC, Dean TA, Lin J (2003) A review of spinning, shear forming and flow forming processes. Int J Mach Tools Manuf 43:1419–1435CrossRefGoogle Scholar
  10. 10.
    Avitzur B, Yang CT (1960) Analysis of power spinning of cones. JEI Trans Am Soc Mech Eng 45:82:231Google Scholar
  11. 11.
    Leach D, Green AJ, Bramley AN (2001) A new incremental forming process for small batch and prototype parts. Proceedings of the ninth international conference on sheet metalGoogle Scholar
  12. 12.
    Amino H, Lu Y, Ozawa S, Fukuda K, Maki T(2002) Die-less NC forming of automotive service panels. Proceedings of the Conference on Advanced Techniques of Plasticity: pp 1015–1020Google Scholar
  13. 13.
    Livers WB, Pilkey AK, Lloyd DJ (2004) Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys. Acta Mater 52:3001–3007CrossRefGoogle Scholar
  14. 14.
    Ambrogio G, De Napoli L, Filice L, Gagliardi G, Muzzupappa M (2005) Application of incremental forming process for high customized medical product manufacturing. J Mater Process Technol 162–163:156–162CrossRefGoogle Scholar
  15. 15.
    Iseki H, Kumon H (1994) Forming limit of incremental sheet metal stretch forming using spherical rollers. Journal of the Japan Society for Technology of Plasticity 35:1336Google Scholar
  16. 16.
    Filice L, Frantini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Ann 51/1:199–202CrossRefGoogle Scholar
  17. 17.
    Shim MS, Park JJ (2001) The formability of aluminum sheet in incremental forming. J Mater Process Technol 113:654CrossRefGoogle Scholar
  18. 18.
    Strano M, Carrino L, Ruggiero M (2004), Representation of forming limits for negative incremental forming of thin sheet metals. Proceedings of the International Deep Drawing Research Group (IDDRG): pp 198–207Google Scholar
  19. 19.
    Kim YH, Park JJ (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130:42–46CrossRefGoogle Scholar
  20. 20.
    Hussain G, Gao L (2007) A novel method to test the thinning limits of sheet-metals in Negative Incremental Forming. Int J Mach Tools Manuf 47:419–435CrossRefGoogle Scholar
  21. 21.
    Hussain G, DAR NU, Gao L, Chen MH (2007) A comparative study on the forming limits of the aluminum sheet in negative incremental forming. J Mater Process Technol 187–188:94–98CrossRefGoogle Scholar
  22. 22.
    Hussain G, Gao L, DAR NU (2007) An experimental study on some formability evaluation methods in negative incremental forming. J Mater Process Technol 186:146–253CrossRefGoogle Scholar
  23. 23.
    Hussain G, Gao L (2006) Fundamental studies on incremental forming of titanium sheet metal. Proceedings of the Manufacturing Science and Engineering Conference: P 10Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics & AstronauticsNanjingPeople’s Republic of China

Personalised recommendations