Skip to main content
Log in

Process chain development for the rapid prototyping of microstructured polymer, ceramic and metal parts: composite flow behaviour optimisation, replication via reaction moulding and thermal postprocessing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Different variants of reaction moulding techniques exploiting the rapid light-induced photopolymerisation of reactive resins are widely used in microsystem technologies for the fabrication of plastic components or for rapid prototyping (RP) purposes. In this paper, the further development of micro reaction moulding with respect to a rapid prototyping of ceramic and metal parts will be described. As in powder injection moulding, the process sequence binder–filler–formulation, replication, debinding and sintering has to be passed. The mould filling and, hence, the accurate reproduction of surface details depend strongly on the composite’s viscosity, which is a function of the filler load. Especially, an improved process control of the composite formation prior to moulding and the thermal debinding is crucial for the realisation of microstructured ceramic or metal parts. The development of the whole process chain and some examples will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wohlers TT (2000) Wohlers report 2000. Wohlers Associates, Fort Collins, Colorado

    Google Scholar 

  2. Gebhardt A (2000) Rapid prototyping. Hanser, Munich, Germany

    Google Scholar 

  3. Ikuta K, Hitowatari K (1992) Photo fabricated three dimensional micro fabrication. In: Proceedings of the JSME Annual Conference on Robotics and Mechatronics (ROBOMEC’92), June 1992, Kawasaki, Japan, pp 545–546

  4. Kawata S, Sun H-B, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412(6848):697–698

    Article  Google Scholar 

  5. Straub M, Nguyen LH, Fazlic A, Gu M (2004) Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography. Opt Mater 27(3):359–364

    Article  Google Scholar 

  6. PROFORM. Home page at http://www.proform.ch, January 2006

  7. microTEC. Home page at http://www.microtec-d.de, January 2006

  8. Focal Point Microsystems. Home page at http://fpmicro.com, January 2006

  9. Bertsch A, Jiguet S, Renaud P (2004) Microfabrication of ceramic components by microstereolithography. J Micromech Microeng 14(2):197–203

    Article  Google Scholar 

  10. Chartier T, Chaput C, Doreau D, Loiseau M (2002) Stereolithography of structural complex ceramic parts. J Mater Sci 37(15):3141–3147

    Article  Google Scholar 

  11. Fischer P, Karapatis N, Romano V, Glardon R, Weber HP (2002) A model for the interaction of near-infrared laser pulses with metal powders in selective laser sintering. Appl Phys A 74(4):467–474

    Article  Google Scholar 

  12. Chen C, Zuo T (2003) Microfabrication of micron metallic powder with laser sintering. Micronanoelectronic Technol 40(7–8):170–172

    Google Scholar 

  13. Microfabrica. Home page at http://www.microfabrica.com, January 2006

  14. Hanemann T, Bauer W, Knitter R, Woias P (2006) Rapid prototyping and rapid tooling techniques for the manufacturing of silicon, polymer, metal and ceramic microdevices. In: Leondes CT (ed) MEMS/NEMS handbook: techniques and applications. Springer, Berlin, Germany, pp 187–255

    Google Scholar 

  15. Hanemann T, Ruprecht R, Haußelt J (1997) Micromolding and photopolymerization. Adv Mater 9(11):927–929

    Article  Google Scholar 

  16. Hanemann T, Pfleging W, Haußelt J, Zum Gahr K-H (2002) Laser micromachining and light induced reaction injection molding as suitable process sequence for the rapid fabrication of microcomponents. Microsys Techn 7(5–6):209–214

    Article  Google Scholar 

  17. Pfleging W, Hanemann T, Torge M, Bernauer W (2003) Rapid fabrication and replication of metal, ceramic and plastic mould inserts for application in microsystem technologies. J Mech Eng Sci 217(1):53–63

    Article  Google Scholar 

  18. Merz L, Rath S, Piotter V, Ruprecht R, Hausselt J (2003) Powder injection molding of metallic and ceramic microparts. Microsys Techn 10(3):202–204

    Article  Google Scholar 

  19. Thomas DG (1965) Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J Colloid Sci 20:267–277

    Article  Google Scholar 

  20. Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3(1):137–152

    Article  Google Scholar 

  21. Quemada D (1977) Rheology of concentrated disperse systems and minimum energy dissipation principle. I. Viscosity-concentration relationship. Rheol Acta 16(1):82–94

    Article  Google Scholar 

  22. Hanemann T (2006) Influence of dispersants on the flow behaviour of unsaturated polyester—alumina composites. Composites A—Appl Sci Manufact 37(5):735–741

    Article  Google Scholar 

  23. Einstein A (1906) Eine neue Bestimmung der Moleküldimension. Ann Physik 19:289–306 and Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimension. Ann Physik 34:591–592

    Google Scholar 

  24. Hanemann, T (2006) Viscosity change of unsaturated polyester—alumina-composites using polyethylene glycol alkyl ether based dispersants. Composites A—Appl Sci Manufact 37(11):2155–2163

    Article  Google Scholar 

  25. Hanemann T, Boehm J, Henzi P, Honnef K, Litfin K, Ritzhaupt-Kleissl E, Hausselt J (2004) From micro to nano: properties and potential applications of micro- and nano-filled polymer ceramic composites in microsystem technology. IEE Proc Nanobiotechnology 151(4):167–172

    Article  Google Scholar 

  26. Hanemann T, Honnef K, Haußelt J (2004) Rapid prototyping of ceramic microcomponents using nanosized alumina. In: Proceedings of Nanofair: New Ideas for Industry, Karlsruhe, Germany, November 2004, pp 175–178

  27. Ritzhaupt-Kleissl E, Boehm J, Hausselt J, Hanemann T (2005) Process chain for tailoring the refractive index of thermoplastic optical materials using ceramic nanoparticles. Adv Eng Mater 7(6):540–545

    Article  Google Scholar 

  28. Piotter V, Holstein N, Plewa K, Ruprecht R, Hausselt J (2004) Replication of micro components by different variants of injection molding. Microsys Techn 10(6–7):547–551

    Article  Google Scholar 

  29. Piotter V, Finnah G, Plewa K, Ruprecht R, Hausselt J (2004) High-resistive micro components produced by high-pressure powder injection molding. In: Menz W, Dimov S (eds) 4M2005: Proceedings of the 1st International Conference on Multi-Material Micro Manufacture. Elsevier, Amsterdam, The Netherlands, pp 207–209

    Google Scholar 

  30. German RM (1990) Powder injection molding. Metal Powder Industries Federation, Princeton, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hanemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanemann, T., Honnef, K. & Hausselt, J. Process chain development for the rapid prototyping of microstructured polymer, ceramic and metal parts: composite flow behaviour optimisation, replication via reaction moulding and thermal postprocessing. Int J Adv Manuf Technol 33, 167–175 (2007). https://doi.org/10.1007/s00170-007-0952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-007-0952-9

Keywords

Navigation