Skip to main content
Log in

A study of techniques in the evaluation of springback and residual stress in hydroforming

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The increasing need for high strength complex hollow bodies for automotive application is pushing towards the use of sheet hydroforming techniques in conjunction with high strength steels. Unfortunately high strength steels are characterised by high springback levels. In this paper the springback and residual stresses have been analysed by means of laboratory trials carried out using the double sheet hydroforming technique. The attention has been focused on the upper blank of TRIP800 steel. The analysis has been performed using different approaches: i) characterisation of sample accuracy by means of a 3D coordinate measuring machine using a new proposed method based on the standard deviation calculation; ii) FE-analysis of both hydroforming and springback stages using an implicit FEM code; iii) residual stress evaluation by means of X-ray diffraction and laser cutting techniques. The effect of pressure, die insert geometry and friction at the blank holder on springback and residual stresses have been analysed and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T:

Top of the part

R:

Corner radius of the part

DMRS:

Difference between the inner and the outer mean residual stresses

MeanRSin :

Inner mean residual stresses

MeanRSout :

Outer mean residual stresses

S1:

First set of experimental trials

S2:

Second set of experimental trials

FEC:

Free expansion at the corners

CEC:

Constrained expansion at the corners

ϕ and ψ:

Inclination of the sample for X-ray diffraction technique

OP:

Overpressure evaluated from experimental curves

ɛeq :

Equivalent plastic strain

References

  1. Geiger M, Celeghini M (2002) Double sheet hydroforming of complex hollow bodies. Ann WPG IX/2:5–10

    Google Scholar 

  2. Geiger M, Celeghini M (2003) L’idroformatura delle Lamiere. Lamiera 3

  3. Drewes E-J, Blümel K, Lenze F-J (2001) Tube and sheet hydroformed steel components for autobody application. La Revue de Métallurgie-CIT, October:927–935

  4. Zhang SH (1999) Developments in hydroforming. J Mater Process Technol 91:236–244

    Article  Google Scholar 

  5. Geiger M, Celeghini M (2002) Double sheet hydroforming of complex hollow parts. In: Proc 7th International Conference on Advanced Technology of Plasticity (ICTP) Yokohama, Japan 2:991–996

  6. Vahl M, Bobbert S, Hein P (2000) Hydroforming of sheet metal pairs for the production of hollow bodies. La Revue de Métallurgie 97, October: 1255–1263

    Google Scholar 

  7. Verlinden B, Bocher Ph, Girault E, Aernoudt E (2001) Austenite texture and bainite/austenite orientation relationships in TRIP steel. Scripta Materiala 45:909–916

    Article  Google Scholar 

  8. Graessel O, Krueger L, Frommeyer G, Meyer LW (2000) High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development – properties – application. Int J Plastic 16:1391–1409

    Article  MATH  Google Scholar 

  9. Pyshmintsev Yu I, De Meyer M, De Cooman BC, Savray RA, Shveykin VP, Vermeulen M (2002) The Influence of the stress state on the plasticity of transformation induced plasticity-aided steel. Metall Mater Trans 33A:1659–1667

    Article  Google Scholar 

  10. Geiger M, Hein P (1999) Prediction and control of the draw-in of hydroformed sheet metal pairs. Prod Eng Ann WGP 1:33–38

    Google Scholar 

  11. Forcellese A, Fratini L, Gabrielli F, Micari F (1998) The evaluation of springback in 3D stamping and coining processes. J Mater Process Technol 80–81:108–112

    Article  Google Scholar 

  12. Bruni C, Forcellese A, Gabrielli F, Troiani A (2003) Straightening of reinforced-concrete rods. In: Proc. of the 6th International Esaform Conference on Material Forming, Salerno, Italy, pp 95–98

  13. Forcellese A, Fratini L, Gabrielli F, Micari F (1996) Computer aided engineering of the sheet bending process. J Mater Process Technol 60:225–232

    Article  Google Scholar 

  14. Li KP, Carden WP, Wagoner RH (2002) Simulation of springback. Int J Mech Sci 44:103–122

    Article  MATH  Google Scholar 

  15. Papeleux L, Ponthot J-P (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125–126:785–791

    Article  Google Scholar 

  16. Hino R, Goto Y, Shiraishi M (1999) Springback of sheet metal laminates subjected to stretch bending and the subsequent unbending. In: Proc 6th International Conference on Technology of Plasticity (ICTP), Nuremberg, Germany, pp 1077–1082

  17. Samuel M (2000) Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals. J Mater Process Technol 105:382–393

    Article  Google Scholar 

  18. Roll K, Rohleder M (2003) Simulation der Rückfederung in der Umformtechnik, Simulation in der Umformtechnik. Workshop, Stuttgart

    Google Scholar 

  19. Rohleder MW (2001) Simulation rückfederungsbedingter Formabweichunger im Productentstehungs prozess von Blechformteilen. Von der Fakultät Maschinenbau der universtität Dortmund zur Erlangung des Grades Doktor-Ingenieur genehmigte Dissertation, Dortmund

  20. Carden WD, Geng LM, Matlock DK, Wagoner RH (2002) Measurement of springback. Int J Mech Sci 44:79–101

    Article  MATH  Google Scholar 

  21. Asnafi N (2001) On springback of double-curved autobody panels. Int J Mech Sci 43:5–37

    Article  MATH  Google Scholar 

  22. Yasar M (2004) Gas detonation forming process and modelling for efficient springback prediction. J Mater Process Technol 150:270–279

    Article  Google Scholar 

  23. Palaniswamy H, Gracious N, Altan T (2004) Optimization of blank dimensions to reduce springback in the flexforming process. J Mater Process Technol 146:28–34

    Article  Google Scholar 

  24. Prevéy PS (1996) Current applications of X-ray diffraction residual stress measurement. In: Vander Voort G, Friel J (eds) Developments in material characterization technologies. ASM International, Materials Park, OH, pp 103–110

    Google Scholar 

  25. He S, Van Bael A, Li SY, Van Houtte P, Mei F, Sarban A (2003) Residual stress determination in cold drawn steel wire by FEM simulation and X-ray diffraction. Mater Sci Eng A346:101–107

    Google Scholar 

  26. Smith DJ, Farrahi GH, Zhu WX, McMahon CA (2001) Obtaining multiaxial residual stress distribution from limited measurements. Mater Sci Eng A303:D281–D291

    Article  Google Scholar 

  27. Albertini G, Bruno G, Dunn BD, Fiori F, Reimers W, Wright JS (1997) Comparative neutron and X-ray residual stress measurements on Al-2219 welded plate. Mater Sci Eng A224:157–165

    Article  Google Scholar 

  28. Hauk V, Macherauch E (1982) Eigenspannungen und Lastspannungen. Carl Hanser, Verlag München Wien

    Google Scholar 

  29. Scholtes B (1991) Eigenspannungen in mechanisch randschichtverformten Werkstoffzuständen. DGM Informationsgesellschaft, Verlag, Oberursel

    Google Scholar 

  30. Kleiner M, Krux R, Homberg W (2004) Analysis of residual stresses in high-pressure sheet metal forming. Ann CIRP 53(1):211–214

    Article  Google Scholar 

  31. Gnaeupel-Herold T, Prask HJ, Fields RJ, Foecke TJ, Cedric Xia Z, Lienert U (2004) A synchrotron study of residual stresses in a Al6022 deep drawn cup. Mater Sci Eng A366:104–113

    Article  Google Scholar 

  32. Koç M, Altan T (2002) Prediction of forming limits and parameters in the tube hydroforming process. Int J Mach Tool Manuf 42:123–138

    Article  Google Scholar 

  33. Blackwell D (1969) Basic statistics. McGraw-Hill, New York

    Google Scholar 

  34. Tolazzi M, Vahl M, Geiger M (2003) Determination of friction coefficients for the finite element analysis of double sheet hydroforming with a modified cup test. In: Proc. 6th International Esaform Conference on Material Forming, Salerno, Italy, 479–482

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bruni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruni, C., Celeghini, M., Geiger, M. et al. A study of techniques in the evaluation of springback and residual stress in hydroforming. Int J Adv Manuf Technol 33, 929–939 (2007). https://doi.org/10.1007/s00170-006-0539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-006-0539-x

Keywords

Navigation