Skip to main content
Log in

Flow patterns in gas-assisted injection molding process in a channel

  • Original article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The flow field of a long bubble steadily expelling a viscous fluid confined by two closely located parallel plates is examined. In order to investigate the influence of bubble size on the flow field, a theoretical bubble profile is used to replace the complicated procedure for computing simultaneously the interface between the gas surface and fluid flows. The present study showed the two typical flow patterns and also a third flow pattern of the stagnation point moving in the region of the bubble tip front during transformation of the two typical flow patterns. The vorticity patterns are also drawn for various bubble profiles and are examined for their effect on the flow. The velocity field is also presented from two different viewpoints and the phenomena is examined. The stagnation point located on the center line between the bubble tip to the upstream is only found in the small range of \(2/3 <\lambda < 0.685\) in a channel, where λ is ratio of the bubble width to the distance between two parallel plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

H :

Half distance between the two parallel plates

U :

Constant velocity of the bubble

\({\overrightarrow{V}}\) :

Velocity

m :

Fractional converge

n :

The normal unit vector on the bubble interface

p :

Pressure in the fluid expelled by bubble

t :

The tangential unit vector on the bubble interface

u :

The velocity of the fluid expelled by the bubble

x :

The axial direction in coordinate system

y :

The radial direction in coordinate system

α :

The over-relaxation factor

θ :

The angle between the normal of the interface and the axial direction

λ :

The ratio of asymptotic bubble width to half distance of the two parallel plates

υ :

Kinematic viscosity

ρ :

Density

ψ :

Stream function

ω :

Vorticity

K :

Iterative time

*:

Dimensionless form

Ca :

Capillary number (dimensionless parameter)

i :

The number of grid in the axial direction

j :

The number of grid in the radial direction

s :

The grid index in the y-direction on the wall

References

  1. Fairbrother FP, Stubbs AE (1935) Studies in electroendosmosis. Part VI. The bubble tube method of measurement. J Chem Sci 1:527–529

    Article  Google Scholar 

  2. Saffman PG, Taylor G (1958) The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc Roy Soc A 245(281):312–329

    ADS  MathSciNet  MATH  CAS  Google Scholar 

  3. Taylor GI (1961) Deposition of a viscous fluid on the wall of a tube. J Fluid Mech 10:161–165

    Article  ADS  MATH  Google Scholar 

  4. Bretherton FP (1961) The motion of long bubbles in tubes. J Fluid Mech 10:166–188

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Goldsmith HL, Mason SG (1962) The movement of single large bubbles in closed vertical tubes. J Fluid Mech 14:42–58

    Article  ADS  MATH  Google Scholar 

  6. Cox BG (1962) On driving a viscous fluid out of a tube. J Fluid Mech 14:81–96

    Article  ADS  MATH  Google Scholar 

  7. Cox BG (1964) An experimental investigation of the streamlines in viscous fluids expelled from a tube. J Fluid Mech 20:193–200

    Article  ADS  Google Scholar 

  8. Pitts E (1980) Penetration of fluid into a Hele-Shaw cell: the Saffman-Taylor experiment. J Fluid Mech 97:53–64

    Article  ADS  Google Scholar 

  9. Reinelt DA, Saffman PG (1985) The penetration of a finger into a viscous fluid in a channel and tube. SIAM J Sci Stat Comput 6:542–561

    Article  MathSciNet  MATH  Google Scholar 

  10. Shen EI, Udell KS (1985) A finite element study of low Reynolds number two-phase flow in cylindrical tubes. J Appl Mech-T ASME 52:253–256

    Article  Google Scholar 

  11. Mavridis H, Hrymak AN, Vlachopoulos J (1986) Finite element simulation of fountain flow in injection molding. Polym Eng Sci 26:449–454

    Article  CAS  Google Scholar 

  12. Schwartz LW, Princen HM, Kiss AD (1986) On the motion of bubbles in capillary tubes. J Fluid Mech 172:259–275

    Article  ADS  CAS  Google Scholar 

  13. Poslinski AJ, Stokes VK (1993) Gas-assisted displacement of a viscous liquid in tube. SPE ANTEC proceedings, New Orleans, pp 68–73

  14. Polonsky S, Shemer L, Barnea D (1999) The relation between the Taylor bubble motion and the velocity field ahead of it. Int J Multiph Flow 25:957–975

    Article  CAS  MATH  Google Scholar 

  15. Huzyak PC, Koelling KW (1997) The penetration of a long bubble through a viscoelastic fluid in a tube. J Non-Newton Fluid 71:73–88

    Article  CAS  Google Scholar 

  16. Gauri V, Koelling KW (1999) Gas-assisted displacement of viscoelastic fluids: flow dynamic at the bubble front. J Non-Newton Fluid 83:183–203

    Article  CAS  MATH  Google Scholar 

  17. Giavedoni MD, Saita FA (1997) The axisymmetric and plane cases of a gas phase steadily displacing a Newtonian liquid: a simultaneous solution of the governing equations. Phys Fluids 9:2420–2428

    Article  ADS  CAS  Google Scholar 

  18. Giavedoni MD, Saita FA (1999) The rear meniscus of a long bubble steadily displacing a Newtonian liquid in a capillary tube. Phys Fluids 11:786–794

    Article  ADS  CAS  MathSciNet  MATH  Google Scholar 

  19. Polynkin A, Pittman JFT, Sienz J (2004) Gas displacing liquids from tubes: high capillary number flow of a power law liquid including inertia effects. Chem Eng Sci 59:2969–2982

    Article  CAS  Google Scholar 

  20. Kamisli F, Ryan ME (1999) Perturbation method in gas-assisted power-law fluid displacement in a circular tube and a rectangular channel. Chem Eng J 75:167–176

    Article  CAS  Google Scholar 

  21. Kamisli F, Ryan ME (2001) Gas-assisted non-Newtonian fluid displacement in circular tubes and noncircular channels. Chem Eng Sci 56:4913–4928

    Article  CAS  Google Scholar 

  22. Kamisli F, Ryan ME (2001) Gas-assisted displacement of a Newtonian fluid confined in a Hele-Shaw cell. Chem Eng J 84:193–200

    Article  CAS  Google Scholar 

  23. Kamisli F (2003) Flow of a long bubble in a square capillary. Chem Eng Process 42:351–363

    Article  CAS  Google Scholar 

  24. Wong H, Radke CJ, Morris S (1995) The motion of long bubbles in polygonal capillaries. Part 1. Thin films. J Fluid Mech 292:71–94

    Article  ADS  MATH  Google Scholar 

  25. Wong H, Radke CJ, Morris S (1995) The motion of long bubbles in polygonal capillaries. Part 2. Drag fluid pressure and fluid flow. J Fluid Mech 292:95–110

    Article  ADS  Google Scholar 

  26. Liao Q, Zhao TS (2003) Modeling of Taylor bubble rising in a vertical mini noncircular channel filled with a stagnant liquid. Int J Multiph Flow 29:411–434

    Article  CAS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuang-Yuan Kung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CH., Chen, PC., Kung, KY. et al. Flow patterns in gas-assisted injection molding process in a channel. Int J Adv Manuf Technol 31, 673–681 (2007). https://doi.org/10.1007/s00170-005-0248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-005-0248-x

Keywords

Navigation