Skip to main content

Advertisement

Log in

Abstract

To optimize the cutting conditions in machining, it is necessary to quantify energy parameters involved in the cutting process. These energy parameters are based on a hypothesis regarding the displacement of the material during the chip formation and the behaviour law of the material. However, a more refined model must be used to take into account complex phenomena in the cutting process. The strain gradient theory appears to be best in modelling rotation phenomena inside material. In order to solve this type of problem, the bases of the strain gradient theory are presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cahuc O, Darnis P, Gérard A, Battaglia JL (2001) Experimental and analytical balance sheet in turning applications. Int J Adv Manuf Technol 18(9):648–656

    Article  Google Scholar 

  2. Carro Cao G (1975) L’analyse de la formation du copeau par les essais de coupe brusquement interrompue et la surface usinée, Journée d’études sur l’optimisation des techniques d’usinage traditionnel. In: Proceedings of Fascicule 2, 17–18 April, INSA, Lyon, France

  3. Cahuc O, Toulouse D, Couetard Y, Gerard A (2000) Un nouveau modèle de la zone de contact outil copeau. Mécanique des milieux continus/Continuum mechanics, t. 328, Série II b, C.R. Academie Science, Paris, pp 1–4

  4. Cosserat EF (1909) Théorie des corps déformables. A. Hermann et Fils, Paris

  5. Mindlin RD, Eshel NN (1968) On the first strain gradient theory in linear elasticity. Int J Solids Struct 4:109–124

    Article  MATH  Google Scholar 

  6. Toupin RA (1962) Elastic materials with couple-stresses. Arch Rational Mech Anal 11:385–414

    Article  MATH  MathSciNet  Google Scholar 

  7. Germain P (1973) The method of the virtual power in continuum mechanics, part 2: microstructure. SIAM J Appl Math 25(3):556–575

    Article  MATH  MathSciNet  Google Scholar 

  8. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    Article  MATH  Google Scholar 

  9. Gurtin ME (2003) Ton a framework for small-deformation viscoplasticity: free energy, microforces, strain gradient. Int J Plast 19:47–90

    Article  MATH  Google Scholar 

  10. Smyshlyaev VP, Fleck NA (1996) The role of strain gradients in the grain size effect for polycrystals. J Mech Phys Solids 44:465–496

    Article  MATH  MathSciNet  Google Scholar 

  11. Lemaitre J, Chaboche JL (1988) Mécanique des matériaux solides, 2nd edn. Dunod, Paris

  12. Changeux B (2001) Loi de comportement pour l’usinage. Localisation de la déformation et aspects microstructuraux. Disseration, l’Ecole Nationale Supérieure d’Art et Métiers, Centre de Paris, France

  13. Klopp RW, Clifton RJ, Shawky TG (1985) Pressure-shear impact and the dynamic viscoplastic response of metals. Mech Mater 4:375–385

    Article  Google Scholar 

  14. Meiller M (2002) Etude expérimentale du frottement outil/pièce en coupe orthogonale. Dissertation, l’Ecole Nationale Supérieure d’Art et Métiers, Centre de Cluny, France

  15. Zhuravlev VG (1998) The model of dry friction in the problem of the rolling of rigid bodies. J Appl Math Mech 62(5):705–710

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raynald Laheurte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laheurte, R., Cahuc, O., Darnis, P. et al. Behaviour law for cutting process. Int J Adv Manuf Technol 29, 17–23 (2006). https://doi.org/10.1007/s00170-004-2498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-004-2498-4

Keywords

Navigation