Skip to main content
Log in

Estimation of heat fluxes during high-speed drilling

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Heat fluxes on each cutting edge of a carbide double cutting drill are estimated during a high-speed machining process from temperature measurements in the drill tool and a direct model that has been established using the non integer system identification approach. A single experiment is required in order to characterize the transient thermal behavior of the tool. The non integer system identification method is based on the recursive linear least square algorithm. The inverse method is based on the constant function specification approach. Results obtained during machining lead to predict the tool wear and possible tool positioning defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herbert EG (1926) The measurement of cutting temperatures. Proc Inst Mech Eng 1:289–329

    Article  Google Scholar 

  2. Shore H (1925) Thermoelectric measurement of cutting tool temperatures. J Washington Acad Sci 15:85–88

    Google Scholar 

  3. Stephenson DA (1993) Tool-work thermocouple temperature measurements: theory and implementation issues. J Eng Ind 115:432–437

    Article  Google Scholar 

  4. Jaspers SP, Dautzenberg JH, Taminiau DA (1998) Temperature measurement in orthogonal metal cutting. Int J Adv Manuf Technol 14:7–12

    Article  Google Scholar 

  5. Changeux (2001) Loi de comportement pour l’usinage. Localisation de la déformation et aspects microstructuraux. Thèse de Mécanique et Materiaux, Paris, no 2001-12, 159 pages

  6. Kwon P, Schiemann T, Kountanya R (2001) An inverse estimation scheme to measure steady-state tool-chip interface temperatures using an infrared camera. Int J Mach Tools Manuf 41:1015–1030

    Article  Google Scholar 

  7. Stephenson DA (1991) Assessment of steady-state metal cutting temperature models based on simultaneous infrared and thermocouple data. J Eng Ind 113:121–128

    Article  Google Scholar 

  8. Stephenson DA (1991) An inverse method for investigating deformation zone temperatures in metal cutting. J Eng Ind 113:129–136

    Article  Google Scholar 

  9. Stephenson DA, Ali A (1993) Tool temperatures in interrupted metal cutting. J Eng Ind 115:432–437

    Article  Google Scholar 

  10. Laraqi N (1996) Phénomène de constriction thermique dans les contacts glissants. Int J Heat Mass Transf 39(17):3717–3724

    Article  Google Scholar 

  11. Groover MP, Kane GE (1971) A continuing study in the determination of temperatures in metal cutting using remote thermocouples. J Eng Ind 93(2):603–608

    Article  Google Scholar 

  12. Yen DW, Wright PK (1986) A remote temperature sensing technique for estimating the cutting interface temperature distribution. J Eng Ind 108:252–263

    Article  Google Scholar 

  13. El-Wardany TI, Mohammed E, Elbestawi MA (1996) Cutting temperature of ceramic tools in high-speed machining of difficult-to-cut materials. Int J Mach Tools Manuf 36(5):611–634

    Article  Google Scholar 

  14. Kim SW, Lee CM, Kim JS, Jung YH (2001) Evaluation of the thermal characteristics in high-speed ball-end milling. J Mater Process Technol 113:406–409

    Article  Google Scholar 

  15. Lin J (1995) Inverse estimation of tool-work interface temperature in end mi lling. Int J Mach Tools Manuf 35(5):751–760

    Article  Google Scholar 

  16. Elmoussami H, Battaglia J-L (2003) A method to estimate the average temperature on the cutting edge of tools. Application on the milling process. Int J of Experimental Heat Transfer 16(2):1–20

    Article  Google Scholar 

  17. Battaglia JL, Elmoussami H, Puigsegur L (2002) Modélisation du comportement thermique d’un outil de fraisage; Approche par identification de système non entier. Comptes Rendus de l’Académi des Sciences, Mécanique 330:857–864

  18. Battaglia JL, Le Lay L, Batsale JC, Oustaloup A, Cois O (2000) Heat flux estimation through inverted non integer identification models. Int J Therm Sci 39(3):374–389

    Article  Google Scholar 

  19. Battaglia JL, Cois O, Puigsegur L, Oustaloup A (2000) Solving an inverse heat conduction problem using a non-integer identified model. Int J Heat Mass Transf 14(44):2671–2680

    Google Scholar 

  20. Battaglia JL, Puigsegur L, Kusiak A (2003) Représentation non entière du transfert de chaleur par diffusion: utilité pour la caractérisation et le contrôle non destructif thermique. Int J Therm Sci 75(4):350–370

    Google Scholar 

  21. Bourouga B, Briot J-M, Bardon J-P (2001) Influence de la vitesse et de la charge sur la conductance thermique de transport entre les bagues d’un roulement à rouleaux. Int J Therm Sci 40(7):622–637

    Article  Google Scholar 

  22. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York London

  23. Samko SG, Kilbas AA, Marichev OI (1993) Fractional Intervals and Derivatives. Theory and applications. Gordon and Breach, Amsterdam

  24. Ljung L (1987) System identification: theory for the user. Prentice Hall

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Battaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglia, JL., Kusiak, A. Estimation of heat fluxes during high-speed drilling. Int J Adv Manuf Technol 26, 750–758 (2005). https://doi.org/10.1007/s00170-003-2039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-003-2039-6

Keywords

Navigation