Skip to main content
Log in

Experimental study on integration of laser-based additive/subtractive processes for meso/micro solid freeform fabrication

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Solid freeform fabrication has attracted considerable attention lately because of its ability to build a 3D structure with a complex and arbitrary shape. This work presents initial studies to adapt this technology for the fabrication of meso-/micro-3D structures. A pulsed Nd:YAG laser was used for laser microdeposition (additive) and micromachining (subtractive) processes. An ultrasonic-based micropowder feeding system was developed to generate precise patterns of micropowders on a substrate without any pre-processing. Laser microdeposition of copper and stainless steel micropowders was accomplished. The characterization of micromachining was performed on stainless steel and copper plates with a laser beam of wavelengths of 355 nm and 266 nm. The integration of laser microdeposition and micromachining processes improved the resolution and edge quality of the meso-/micropatterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang XN, Sun C, Zhang X, Xu B, Ye YH (2000) Micro-stereolithography of lead zirconate titanate thick film on Silicon Substrate. Sens Actuators A 87(1–2):72–77

    Google Scholar 

  2. Zhang X, Jiang XN, Sun C (1999) Micro-stereolithography for polymeric and ceramic microstructures. Sens Actuators A 77(2):149–156

    Article  Google Scholar 

  3. Varadan VK, Varadan VV, Motojima S (1996) Three-dimensional polymeric and ceramic MEMS and their applications. Proceedings of SPIE. Smart Structures and Materials 1996: Smart Electronics and MEMS, vol 2722, pp 156–164

    Google Scholar 

  4. Varadan VK, Varadan VV (2000) Micropump and venous valve by micro stereo lithography. Proceedings of SPIE. Smart Structures and Materials 2000: Smart Electronics and MEMS, vol 3990, pp 246–254

    Google Scholar 

  5. Maruo S, Ikuta K (1999) Movable microstructures made by two-photon three-dimensional microfabrication. Proceedings of the International Symposium on Micro Machine and Human Science, Piscataway, NJ, pp 173–178

  6. Maruo S, Ikuta K (2000) Three-dimensional microfabrication by use of single-photon-absorbed polymerization. Appl Phys Lett 76(19):2656–2658

    Article  Google Scholar 

  7. Cohen A, Zhang G, Tseng F, Mansfeld F, Frodis U, Will P (1998) EFAB: Batch production of functional, fully-dense metal parts with micron-scale features. Solid Freeform Fabrication Proceedings, Austin, TX, pp 161–168

  8. Weiss LE, Merz R, Prinz FB, et al. (1997) Shape deposition manufacturing of heterogeneous structures. J Manuf Syst 16(4):239–248

    Google Scholar 

  9. Li XC, Golnas A, Prinz F (2000) Shape deposition manufacturing of smart metallic structures with embedded sensors. Proceedings of SPIE: Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, vol 3986, pp 160–171

  10. Chrisey DB, Gamota DR, Helvajian H, Taylor CP (2000) Materials development for direct write technologies. Materials Research Society Symposium Proceedings 624:3–8

    Google Scholar 

  11. Mazumder J, Kar A (1995) Theory and application of laser chemical vapor deposition. Plenum, New York, pp 215–293

  12. Jean D, Duty C, Fuhrman B, Lackey WJ (1999) Precision LCVD system design with real time process control. Solid Freeform Fabrication Proceedings, Austin, TX, pp 59–65

  13. Renn MJ, Vdovin O, Weiman CE, Anderson DZ, Cornell EA (1995) Laser-guided atoms in hollow-core optical fibers. Phys Rev Lett 75:3253–3256

    Article  PubMed  Google Scholar 

  14. Pique A, Chrisey DB, Fitz-Gerald JM, et al. (2000) Direct writing of electronic and sensor materials using a laser transfer technique. J Mater Res 15(9):1872–1875

    Google Scholar 

  15. Griffith ML, Keicher DM, Atwood CL, et al. (1996) Free form fabrication of metallic components using laser engineered net shaping (LENS). Solid Freeform Fabrication Proceedings, Austin, TX, pp 125–132

  16. Lewis GK, Nemec R, Milewski J, Thoma DJ, Cremers D, Barbe M (1994) Directed light fabrication. Proceedings of SPIE: ICALEO ’94 : Laser Materials Processing, vol 2500, pp 17–26

  17. Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition: designed macro and microstructure. Mater Res Innov 3(3):118–131

    Article  Google Scholar 

  18. Miller JC (1994) Laser ablation. Springer, Berlin Heidelberg New York

  19. Swenson E, Sun Y, Dunsky C (2000) Laser micromachining in the microelectronics industry: a historical overview. Proceedings of SPIE: Laser Beam Shaping, vol 4095, pp 118–132

    Google Scholar 

  20. Gower MC (1993) Excimer lasers: current and future applications in industry and medicine. Crafer RC, Oakley PJ (eds) Laser processing in manufacturing. Chapman & Hall, London

    Google Scholar 

  21. Ramos J, Estrela R, Pitarch L, Julia J, Pascual B (1999) Laser micromachining of metals. Proceedings of SPIE: Computer-Controlled Microshaping, vol 3822, pp 207–213

    Google Scholar 

  22. Li J, Ananthasuresh G (2001) Quality study on the excimer laser micromachining of electro-thermal-compliant micro devices. J Micromechan Microeng 11(1):38–47

    Article  Google Scholar 

  23. Hartke K, King K, Farson D, Ely K (2000) Micromachining with a frequency converted diode-pumped Nd:YAG laser. Proceedings of SPIE: Laser Precision Microfabrication, vol 4088, pp 248–251

    Google Scholar 

  24. Stamm U, Fiebig M, Govorkov S, et al. (2000) Novel results of laser precision microfabrication with excimer lasers and solid-state lasers. Proceedings of SPIE: Laser Precision Microfabrication, SPIE, 4088, pp 118–123

    Google Scholar 

  25. Toenshoff H, Von AF, Ostendorf A, Willmann G, Wagner T (1999) Precision machining using UV and ultrashort pulse lasers. Proceedings of SPIE: Design, Test, and Microfabrication of MEMS and MOEMS, vol 3680, pp 536–545

    Google Scholar 

  26. Illy EK, Withford MJ, Brown D, Piper JA (1997) High-speed microdrilling of polymers using high PRF UV lasers. Proceedings of SPIE. CLEO ’97: Summaries of papers presented at the Conference on Lasers and Electro-Optics, Optical Society of America, vol 11, pp 359

  27. Ready JF (2001) LIA Handbook of Laser Materials Processing. Magnolia Publishing, Inc., Orlando, Florida, USA, Chap. 1

  28. Lehane C, Kwok HS (2001) Enhanced drilling using a dual-pulse Nd:YAG laser. Appl Phys A 73:45–48

    Google Scholar 

  29. Ready JF (2001) LIA Handbook of Laser Materials Processing. Magnolia Publishing, Inc., Orlando, Florida, USA, Chap. 5

  30. Govorkov SV, Slobodtchikov EV, Wiessner AO, Basting D (2000) High accuracy microdrilling of steel with solid-state UV laser at 10 mm/sec rate. Proceedings of SPIE: Laser Applications in Microelectronic and Optoelectronic Manufacturing V, vol 3933, pp 365–370

    Google Scholar 

  31. Chang JJ, Warner BE (1996) Laser-plasma interaction during visible-laser ablation of metals. Appl Phys Lett 69(4):473–475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Yang, Y. & Li, X. Experimental study on integration of laser-based additive/subtractive processes for meso/micro solid freeform fabrication. Int J Adv Manuf Technol 26, 335–341 (2005). https://doi.org/10.1007/s00170-003-2008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-003-2008-0

Keywords

Navigation