Skip to main content

Advertisement

Log in

Land-cover/land-use change dynamics modeling based on land change modeler

  • Special Issue Paper
  • Published:
The Annals of Regional Science Aims and scope Submit manuscript

Abstract

Forest cover in the Rherhaya watershed of the Moroccan High Atlas region, characterized by its critical natural conditions, faces strong human pressure, leading to the fragmentation of the landscape. To improve natural capital management, to support stakeholders in their decision-making process and to sustain ecosystem services provided by the watershed, this work aims at developing a long-term vision of the local landscape. Land-use/land-cover change dynamics have been analyzed at 1984, 2000 and 2017 timestamps, and prospective modeling based on the Land Change Modeler (LCM) model has been used to develop a future vision of forest landscapes. LCM modeling approaches rely on two types of input maps: (1) maps of land cover at times before the calibration period and (2) maps of explanatory variables (that precludes land-use or land-cover change over time such as slope, altitude and accessibility: distance to roads or human settlement). The model is validated through the juxtaposition of the 2017 observed map and the predicted map for the same year using the trained model. The result shows an overall accuracy of 64.58 per cent. Based on the hypothesis of human pressures intensification in the future, the forecasted land-cover map by 2040 has been derived as a result of the explanatory variables. This prospective modeling, therefore, predicts by 2040 an expansion of buildings that will be made at the expense of bare soil surfaces. Indeed, this expansion will be linked to population growth stemming mainly due to a strong migration of populations from neighboring regions in search of better living conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguejdad R, Houet T (2008) Modeling of urban sprawl using the land change modeler on a French metropolitan area (Rennes): foresee the unpredictable. In: Symposium spatial landscape modelling: from dynamic approaches to functional evaluations, Toulouse, June 3rd-5th

  • Akasbi Z, Oldeland J, Dengler J, Finckh M (2012) Social and ecological constraintson decision making by transhumant pastoralists: a case study from the Moroccan Atlas Mountains. J Mt Sci 9(3):307–321

    Article  Google Scholar 

  • Areendran G, Raj K, Mazumdar S, Puri K, Shah B, Mukerjee R, Medhi K (2013) Modeling REDD+ baselines using mapping technologies: a pilot study from Balpakram-Baghmara Landscape (BBL) in Meghalaya. India Int J Geoinf 9(1):61–71

    Google Scholar 

  • Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, USA

    Google Scholar 

  • Bonet A (2004) Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain: insights for conservation and restoration of degraded lands. J Arid Environ 56(2):213–233

    Article  Google Scholar 

  • Brown DG, Walker R, Manson S, Seto K (2012) Modeling land use and land cover change. In: Land change science Springer, Dordrecht, pp. 395-409

  • Cheggour A, Simonneaux V, Asma S, Yaro Y, Sadik E, Sabir M, Roose E (2008) Recherche d’indicateurs de ruissellement et des risques d’érosion au moyen de tests d’infiltrométrie dans le bassin versant du Rhéraya (Haut-Atlas occidental, Maroc). Rev Des Sci De L’eau/J Water Sci 21(3):311–322

    Google Scholar 

  • Cook BI, Anchukaitis KJ, Touchan R, Meko DM, Cook ER (2016) Spatiotemporal drought variability in the Mediterranean over the last 900 years. J Geophys Res: Atmospheres 121(5):2060–2074

    Article  Google Scholar 

  • Cramer W, Guiot J, Fader M, Garrabou J, Gattuso JP, Iglesias A, Lange MA, Lionello P, Llasat MC, Paz S, Peñuelas J (2018) Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Climate Change 8(11):972–80

    Article  Google Scholar 

  • Cruette J (1975) Pluviométrie du bassin du Tensift

  • Curt T, Laroussinie O, Terrasson D (1999) Boisements naturels des espaces agricoles en déprise. Ingénieries eau-agriculture-territoires, (spécial Boisements naturels des espaces agricoles en déprise), 176

  • d’Aquino P, August P, Balmann A, Berger T, Bousquet F, Brondízio E, Brown DG, Couclelis H, Deadman P, Goodchild MF, Gotts NM (2002) Agent-based models of land-use and land-cover change. In:Proc of an International Workshop, pp. 4-7

  • Demirel H, Sertel E, Kaya S, Seker DZ (2008) Exploring impacts of road transportation on environment: a spatial approach. Desalination 226(1–3):279–88

    Article  Google Scholar 

  • Dengler J, Blondel J, Aronson J, Bodiou J-Y, Boeuf G (2012) The Meditrerranean Region–biological diversity in space and time p. 28

  • Dietzel C, Clarke K (2006) The effect of disaggregating land use categories in cellular automataduring model calibration and forecasting. Comput Environ Urban Syst 30(1):78–101

    Article  Google Scholar 

  • Dodane C, Joliveau T, Rivière-Honegger A (2014) Simuler les évolutions de l’utilisation du sol pour anticiper le futur d’un territoire. Analyse critique d’une expérience de géoprospective dans un bassin versant périurbain de l’agglomération lyonnaise. Cybergeo: Eur J Geograp

  • Eastman JR (2009) Idrisi Taiga. Clark University, Worcester

    Google Scholar 

  • Eastman JR (2012) Idrisi selva tutorial, vol 45. Idrisi Production, Clark Labs-Clark University, pp 51–63

  • Eastman JR, Toledano J (2018) A short presentation of the land change modeler (LCM). In: Geomatic approaches for modeling land change scenarios Springer, Cham, pp. 499–505

  • Eastman JR, Van Fossen ME, Solarzano LA (2005) Transition potential modeling for land coverchange. GIS, Spatial Anal Modeling 17:357–386

    Google Scholar 

  • Eckert S, Ratsimba HR, Rakotondrasoa LO, Rajoelison LG, Ehrensperger A (2011) Deforestation and forest degradation monitoring and assessment of biomass and carbon stock of lowland rainforest in the Analanjirofo region. Madagascar Forest Eco Manag 262(11):1996–2007

    Article  Google Scholar 

  • Esper J, Frank D, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34(17):227

    Article  Google Scholar 

  • Fuller DO, Hardiono M, Meijaard E (2011) Deforestation projections for carbon-richpeat swamp forests of Central Kalimantan. Indonesia Environ Manag 48(3):436–447

    Google Scholar 

  • Guan DJ, Li HF, Inohae T, Weici S, Nagaie T, Hokao K (2011) Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222(20–22):3761–3772

    Article  Google Scholar 

  • Haloui B (1986) Contribution à l’étude du milieu et de la végétation du bassin versant de l’oued Rheghaya (Haut Atlas de Marrakech) (Doctoral dissertation, Thèse 3 cycle, Université Cadi Ayyad, Marrakech)

  • Han H, Yang C, Song J (2015) Scenario simulation and the prediction of land useand land cover change in Beijing. China Sustain 7(4):4260–4279

    Article  Google Scholar 

  • Houet T, Schaller N, Castets M, Gaucherel C (2014) Improving the simulationof fine-resolution landscape changes by coupling top-down and bottom-up land use and cover changes rules. Int J Geogr Inf Sci 28(9):1848–1876

    Article  Google Scholar 

  • Jiao M, Mengmeng Hu, Xia B (2019) Spatiotemporal dynamic simulation of land-use andlandscape-pattern in the Pearl River Delta. China Sustain Cities Soc 49:101581

    Article  Google Scholar 

  • Junior RV, Siqueira H, Guidolini J, Abdala VL, Machado M (2012) Diagnóstico demudanças e persistência de ocupação do solo entre 1978 e 2011 no IFTM-CAMPUS UBERABA, utilizando o “Land Change Modeler (LCM).” Enciclopédia Biosfera 8(15):672–681

    Google Scholar 

  • Kaliraj S, Chandrasekar N, Ramachandran KK, Srinivas Y, Saravanan S (2017) Coastal landuse andland cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. Egypt J Remote Sensing Space Sci 20(2):169–185

    Google Scholar 

  • Khoi DD, Murayama Y (2010) Forecasting areas vulnerable to forest conversion in the Tam Dao National park region. Vietnam Remote Sensing 2(5):1249–1272

    Article  Google Scholar 

  • Khoi DD, Murayama Y (2011) Modeling deforestation using a neural network-Markov model. In: Spatial analysis and modeling in geographical transformation process. Springer, Dordrecht, pp. 169-190

  • Kim OS, Newell JP (2015) The ‘Geographic Emission Benchmark’ model: a baseline approach to measuring emissions associated with deforestation and degradation. J Land Sci 10(4):466–89

    Article  Google Scholar 

  • Kumar KS, Bhaskar PU, Padmakumari K (2015) Application of land change modelerfor prediction of future land use land cover: a case study of Vijayawada city. Int J Adv Technol Eng Sci 3(1):773–783

    Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C et al (2007) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang 11(4):261–269

    Article  Google Scholar 

  • Lasanta-Martínez T, Vicente-Serrano SM, Cuadrat-Prats JM (2005) Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Appl Geograp 25(1):47–65

    Article  Google Scholar 

  • Li X, Yeh AG-O (2002) Neural-network-based cellular automata for simulating multipleland use changes using GIS. Int J Geogr Inf Sci 16(4):323–343

    Article  Google Scholar 

  • Maestripieri N, Paegelow M (2013) Validation spatiale de deux modèles de simulation: l’exemple des plantations industrielles au Chili. Cybergéo: Eur J Geograp 18:345

    Google Scholar 

  • Mas JF, Kolb M, Houet T, Paegelow M, Olmedo MC (2011) Éclairer le choix des outils de simulation des changements des modes d’occupation et d’usages des sols. Une approche comparative. Revue Internationale de Géomatique 21(3):405–30

    Article  Google Scholar 

  • Mas JF, Kolb M, Paegelow M, Olmedo MT, Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Modelling Softw 1(51):94–111

    Article  Google Scholar 

  • Megahed Y, Cabral P, Silva J, Caetano M (2015) Land cover mapping analysis andurban growth modelling using remote sensing techniques in greater Cairo region—Egypt. ISPRS Int J Geo Inf 4(3):1750–1769

    Article  Google Scholar 

  • Mittermeier RA, Hawkins FR, Rajaobelina SE, Langrand OL (2005) Wilderness conservation in a biodiversity hotspot. Int J Wilderness 11(3):42–5

    Google Scholar 

  • Mondal MS, Sharma N, Garg PK, Kappas M (2016) Statistical independence testand validation of CA Markov land use land cover (LULC) prediction results. Egypt J Remote Sensing and Space Sci 19(2):259–272

    Google Scholar 

  • Mottet TP, Frymier AB, Beebe SA (2006) Theorizing about instructional communication Rhetorical and relational perspectives. Handbook of Instructional Communication, pp 255 282

  • Moukrim S, Lahssini S, Naggar M, Lahlaoi H, Rifai N, Arahou M, Rhazi L (2019) Local community involvement in forest rangeland management: case study of compensation on forest area closed to grazing in Morocco. Rangeland J 41(1):43–53

    Article  Google Scholar 

  • Moulds S, Buytaert W, and Mijic A (2015) An open and extensible framework for spatially explicit landuse change modelling: the lulcc R package. Geoscientific Model Development

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  Google Scholar 

  • Nath B, Niu Z, Singh RP (2018) Land use and land cover changes, and environment and risk evaluation of Dujiangyan City (SW China) using remote sensing and GIS techniques. Sustainability 10(12):4631

    Article  Google Scholar 

  • Nuissl H, Siedentop S (2020) Urbanisation and Land Use Change. In: Sustainable land management in a european context, pages. Springer, Cham, pp. 75–99

  • Ongsomwang S, Pimjai M (2015) Land use and land cover prediction and its impact on surfacerunoff. Suranaree J Sci Technol 22(2):205–223

    Google Scholar 

  • Ozturk D (2015) Urban growth simulation of Atakum (Samsun, Turkey) using cellular automataMarkov chain and multi-layer perceptron-Markov chain models. Remote Sensing 7(5):5918–5950

    Article  Google Scholar 

  • Parsa VA, Yavari A, Nejadi A (2016) Spatio-temporal analysis of land use/landcover pattern changes in Arasbaran Biosphere Reserve: Iran. Modeling Earth Syst Environ 2(4):1–13

    Article  Google Scholar 

  • Pausas JG (1999) Mediterranean vegetation dynamics: modelling problems and functional types. Plant Ecol 140(1):27–39

    Article  Google Scholar 

  • Pedro Regato and Rami Salman (2008) Mediterranean mountains in a changing world: Guidelines for developing action plans. IUCN

  • Pérez-Vega A, Mas J-F, Ligmann-Zielinska A (2012) Comparing two approachesto land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environ Model Softw 29(1):11–23

    Article  Google Scholar 

  • Poelmans L, Van Rompaey A (2009) Detecting and modelling spatial patterns of urban sprawlin highly fragmented areas: a case study in the Flanders-Brussels region. Landsc Urban Plan 93(1):10–19

    Article  Google Scholar 

  • Qiong W, Li H-q, Wang R-s, Paulussen J, He Y, Wang M, Wang B-h, Wang Z (2006) Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc Urban Plan 78(4):322–333

    Article  Google Scholar 

  • Reis JP, Silva EA, Pinho P (2016) Spatial metrics to study urban patterns in growingand shrinking cities. Urban Geogr 37(2):246–271

    Article  Google Scholar 

  • RGPH (2014) Recensement général de la population et de l’habitat

  • Rimal B, Zhang L, Keshtkar H, Wang N, Lin Yi (2017) Monitoring and modelingof spatiotemporal urban expansion and land-use/land-cover change using integrated Markov chain cellular automata model. ISPRS Int J Geo Inf 6(9):288

    Article  Google Scholar 

  • Saha GC, Paul SS, Li J, Hirshfield F, and Sui J (2012) Investigation of land-use change and groundwater–surface water interaction in the Kiskatinaw River Watershed, Northeastern British Columbia (Parts of NTS 093P/01,/02,/07–/10). Geoscience BC Summary of Activities pp. 2013–1

  • Sangermano F, Toledano J, Eastman JR (2012) Land cover change in the BolivianAmazon and its implications for REDD+ and endemic biodiversity. Landsc Ecol 27(4):571–584

    Article  Google Scholar 

  • Sarkar T, Mishra M (2018) Soil erosion susceptibility mapping with the application oflogistic regression and artificial neural network. J Geovisualization Spatial Anal 2(1):8

    Article  Google Scholar 

  • Scheyvens R (2014) Development field work: a practical guide. Sage

  • Shooshtarian MR, Dehghani M, Margherita F, Gea OC, Mortezazadeh S (2018) Land use change and conversion effects on ground water quality trends: an integration of land change modeler in gis and a new ground water quality index developed by fuzzy multi-criteria group decision-making models. Food and Chem Toxicol 114:204–214

    Article  Google Scholar 

  • Singh SK, Sk Mustak PK, Srivastava S Szabó, Islam T (2015) Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ Processes 2(1):61–78

    Article  Google Scholar 

  • Sirtou M (1995) Etude hydro-climatologique des bassins du N’Fis, du Rheraya, de l’Ourika et du Zat (Maroc). PhD thesis, Université Paul Verlaine-Metz

  • Tasser E, Leitinger G, Tappeiner U (2017) Climate change versus land-use change—What affects the mountain landscapes more? Land Use Policy 60:60–72

    Article  Google Scholar 

  • The case of Chunati Wildlife Sanctuary (2018) Kamrul Islam, Md Farhadur Rahman, and Mohammed Jashimuddin. Modeling land use change usingcellular automata and artificial neural network. Bangladesh Eco Indic 88:439–453

    Google Scholar 

  • Uddin AFMJ, Taufique T, Ona AF, Shahrin S, Mehraj H (2015) Growth and flowering performance evaluation of thirty two chrysanthemum cultivars. J Biosci Agric Res 4(01):40–51

    Article  Google Scholar 

  • Václavík T, Rogan J (2009) Identifying trends in land use/land cover changes in the contextof post-socialist transformation in central Europe: a case study of the greater Olomouc region. Czech Repub Gisci Remote Sensing 46(1):54–76

    Article  Google Scholar 

  • Veldkamp A, Lambin EF (2001) Predicting land-use change. Agric Ecosyst Environ 85(1–3):1–6

    Article  Google Scholar 

  • Verburg Peter H, Paul PS, Martin JD, Veldkamp A (2004) Land use change modelling: currentpractice and research priorities. Geo J 61(4):309–324

    Google Scholar 

  • Visconti P, Elias VV, Pinto IS, Fischer M, Ali-Zade V, Báldi A, Brucet S, Bukvareva EN, Byrne K, Caplat P, et al (2018) Status, trends and future dynamics of biodiversity and ecosystems underpinning nature’s contributions to people. In: The IPBES regional assessment report on biodiversity and ecosystem services for Europe and Central Asia, pp. 187–384

  • Wang J, Maduako IN (2018) Spatio-temporal urban growth dynamics of Lagos Metropolitan Region of Nigeria based on Hybrid methods for LULC modeling and prediction. Eur J Remote Sensing 51(1):251–265

    Article  Google Scholar 

  • Wang X, Adamowski JF, Wang G, Cao J, Zhu G, Zhou J, Liu C, Dong X (2019) Farmers’ willingness to accept compensation to maintain the benefits of urban forests. Forests 10(8):691

    Article  Google Scholar 

  • Wang C, Lei S, Elmore AJ, Jia D, Shouguo Mu (2019) Integrating temporal evolution with cellular automata for simulating land cover change. Remote Sensing 11(3):301

    Article  Google Scholar 

  • Yunfeng Hu, Zhen L, Zhuang D et al (2019) Assessment of land-use and land-cover change in Guangxi. China Sci Rep 9(1):1–13

    Google Scholar 

  • Zavala MA, Burkey TV (1997) Application of ecological models to landscape planning: the case of the Mediterranean basin. Landsc Urban Plan 38(3–4):213–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Qacami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was done with a partial financial support of the Moroccan Association of Regional Science.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qacami, M., Khattabi, A., Lahssini, S. et al. Land-cover/land-use change dynamics modeling based on land change modeler. Ann Reg Sci 70, 237–258 (2023). https://doi.org/10.1007/s00168-022-01169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00168-022-01169-z

JEL Classification

Navigation