Barriers to cross-region research and development collaborations in Europe: evidence from the fifth European Framework Programme

Abstract

The focus of this paper is on cross-region R&D collaboration funded by the fifth EU Framework Programme (FP5). The objective is to measure distance, institutional, language and technological barrier effects that may hamper collaborative activities between European regions. Particular emphasis is laid on measuring discrepancies between two types of collaborative R&D activities, those generating output in terms of scientific publications and those that do not. The study area is composed of 255 NUTS-2 regions that cover the pre-2007 member states of the European Union (excluding Malta and Cyprus) as well as Norway and Switzerland. We employ a negative binomial spatial interaction model specification to address the research question, along with an eigenvector spatial filtering technique suggested by Fischer and Griffith (2008) to account for the presence of network autocorrelation in the origin–destination cooperation data. The study provides evidence that the role of geographical distance as collaborative deterrent is significantly lower if collaborations generate scientific output. Institutional barriers do not play a significant role for collaborations with scientific output. Language and technological barriers are smaller but the estimates indicate no significant discrepancies between the two types of collaborative R&D activities that are in focus of this study.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    The thematic priorities in FP5 are the following (with the subprogramme name given in parentheses): quality of life and management of living resources (Quality of life); user-friendly information society (IST); competitive and sustainable growth (GROWTH); energy, environment and sustainable development (EESD); confirming the international role of community research (INCO2); promotion of innovation and encouragement of SME participations (Innovation/SME); and improving the human research potential and the socio-economic knowledge base (Improving) (CORDIS 2008). Moreover, it is worth noting that FP5 emphasised the protection of intellectual property rights in order to improve the efficiency of collaboration within the various types of European research projects.

  2. 2.

    Associated states included the candidates for EU membership in that time period (Bulgaria, Cyprus, Czech Republic, Estonia, Hungary, Latvia, Lithuana, Malta, Poland, Romania, Slovakia, Slovenia) as well as Iceland, Israel, Liechtenstein, Norway and Switzerland (see CORDIS 2008).

  3. 3.

    These studies fail to account for network autocorrelation. Hence, the results are likely to be biased and may lead to unreliable or incorrect conclusions. A notable exception accounting for network autocorrelation in modelling collaboration flows is the study by Scherngell and Lata (2013).

  4. 4.

    Note that is defined as \(\sum ^{n}_{j=1}Y_{ij}\) and .

  5. 5.

    Neighbours may be defined using contiguity or measures of spatial proximity such as cardinal distance (for example, in terms of the great circle distance) or ordinal distance (for example, in terms of \(k\)-nearest neighbours). In this application, we use the concept of \(k\)-nearest neighbours with \(k=5\) to define \(W\).

  6. 6.

    The survey was conducted in 2007 by the Austrian Institute of Technology. Questionnaires were sent out (via e-mail) to participating organisations of 9,107 FP5 projects with 20 or less participating organisations [that is, 59 % of all FP5 projects]. A total of 1686 organisations returned the completed questionnaire, representing a response rate of 18.5 %. The survey covers about 2.6 % of all participating organisations in the fifth Framework Programme and provides information on partner selection, intra-project collaboration and output performance in terms of scientific publications.

  7. 7.

    NUTS-2 regions, though varying in size, are generally considered to represent an appropriate level of spatial granularity for modelling cross-region collaborations in Europe (see, for example, Scherngell and Barber 2011; Hoekman et al. 2013; Scherngell and Lata 2013).

  8. 8.

    Note, for example, that for a project with three different participating organisations located in three different regions (say \(i, \, j\) and \(k\)), we count three links from \(i\) to \(j, \, j\) to \(k\) and \(k\) to \(j\).

  9. 9.

    Language areas are defined by the region’s official language. Note that Belgium has French-speaking and Flemish-speaking regions; Switzerland has German-speaking, French-speaking and Italian- speaking regions.

References

  1. Almendral JA, Oliveira J, López L, Sanjuán MA, Mendes J (2007) The interplay of universities and industry through the FP5 network. New J Phys 9(6):183–198

    Article  Google Scholar 

  2. Barber MJ, Fischer MM, Scherngell T (2011) The community structure of research and development cooperation in Europe. Evidence from a social network perspective. Geogr Anal 43(4):415–432

    Article  Google Scholar 

  3. Bolduc D, Laferrière R, Santarossa G (1995) Spatial autoregressive error components in travel flow models: an application to aggregate mode choice. In: Anselin L, Florax R (eds) New directions in spatial econometrics. Springer, Berlin, pp 96–108

    Google Scholar 

  4. Cameron AC, Trivedi PK (1998) Regres anal count data. Cambridge University Press, Cambridge

    Google Scholar 

  5. Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344

    Article  Google Scholar 

  6. Chun Y, Griffith DA (2011) Modeling network autocorrelation in space-time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536

    Article  Google Scholar 

  7. CORDIS (2008) FP5 - EC Programme: Maximum amounts and breakdown (1998–2002). URL: http://cordis.europa.eu/fp5/about.htm

  8. European Council (1998) Council decision of 22 December 1998 concerning the rules for the participation of undertakings, research centres and universities and for the dissemination of research results for the implementation of the fifth Framework Programme of the European Community (1998–2002). http://ec.europa.eu/research/fp5.html

  9. Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in the European Union. J Reg Sci 48(5):969–989

    Article  Google Scholar 

  10. Fischer MM, Scherngell T, Jansenberger E (2006) The geography of knowledge spillovers between high-technology firms in Europe: evidence from a spatial interaction modeling perspective. Geogr Anal 38(3):288–309

    Article  Google Scholar 

  11. Gourieroux C, Monfort A, Trognon A (1984) Pseudo-maximum likelihood methods: applications to Poisson models. Econometrica 52(3):701–720

    Article  Google Scholar 

  12. Greene WH (1997) Econom anal, 7th edn. Pearson Education, Essex

    Google Scholar 

  13. Griffith DA, Fischer MM (2013) Constrained variants of the gravity model and spatial dependence: model specification and estimation issues. J Geogr Syst 15(3):291–317

    Article  Google Scholar 

  14. Hoekman J, Frenken K, van Oort F (2009) The geography of collaborative knowledge production in Europe. Ann Reg Sci 43(3):721–738

    Article  Google Scholar 

  15. Hoekman J, Scherngell T, Frenken K, Tijssen R (2013) Acquisition of European research funds and its effect on international scientific collaboration. J Econ Geogr 13(1):23–52

    Article  Google Scholar 

  16. Kristzin T, Fischer MM (2014) The gravity model for international trade: specification and estimation issues. Paper presented at the 54th European Congress of the Regional Science Association, St. Petersburg, 26–29 August 2014

  17. LeSage JP, Fischer MM, Scherngell T (2007) Knowledge spillovers across Europe: evidence from a Poisson spatial interaction modelling perspective. Geogr Anal 38(3):288–309

    Google Scholar 

  18. LeSage J, Pace RK (2009) Introd spat econom. CRC Press, Boca Raton

    Google Scholar 

  19. Long JS (1997) Regression models for categorical and limited dependent variables. Sage, Thousand Oaks, London and New Delhi

    Google Scholar 

  20. Maggioni MA, Uberti TE (2009) Knowledge networks across Europe: Which distance matters? Ann Reg Sci 43(3):691–720

    Article  Google Scholar 

  21. Maggioni MA, Nosvelli M, Uberti TE (2007) Space versus networks in the geography of innovation: a European analysis. Pap Reg Sci 86(3):471–493

    Article  Google Scholar 

  22. Maurseth PB, Verspagen B (2002) Knowledge spillovers in Europe: a patent citations analysis. Scand J Econ 104(4):531–545

    Article  Google Scholar 

  23. Pace RK, LeSage JP, Zhu S (2013) Interpretation and computation of estimates from regression models using spatial filtering. Spat Econ Anal 8(3):352–369

    Article  Google Scholar 

  24. Paier M, Scherngell T (2011) Determinants of collaboration in European R&D networks: empirical evidence from a discrete choice model. Ind Innov 18(1):89–104

    Article  Google Scholar 

  25. Ponds R, van Oort F, Frenken K (2007) The geographical and institutional proximity of research collaboration. Pap Reg Sci 86(3):423–443

    Article  Google Scholar 

  26. Reinold F, Paier M, Fischer MM (2014) Joint knowledge production in European R&D networks: results from a discrete choice modeling perspective. In: Scherngell T (ed) The geography of networks and R&D collaborations. Springer, Berlin, pp 201–220

    Google Scholar 

  27. Scherngell T, Barber MJ (2009) Spatial interaction modelling of cross-region R&D collaborations: empirical evidence from the 5th EU Framework Programme. Pap Reg Sci 88(3):531–546

    Article  Google Scholar 

  28. Scherngell T, Barber MJ (2011) Distinct spatial characteristics of industrial and public research collaborations: evidence from the fifth EU Framework Programme. Ann Reg Sci 46(2):247–266

    Article  Google Scholar 

  29. Scherngell T, Lata R (2013) Towards an integrated European research area? Findings from eigenvector spatially filtered spatial interaction models using European Framework Programme data. Pap Reg Sci 92(3):555–577

    Google Scholar 

  30. Santos Silva JMC, Tenreyro S (2006) The log of gravity. Rev Econ Stat 88(4):641–658

    Article  Google Scholar 

  31. Tiefelsdorf M (2003) Misspecification in interaction model distance decay relations: a spatial structure effect. J Geogr Syst 5(1):25–50

    Article  Google Scholar 

  32. Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39(1):1193–1221

    Article  Google Scholar 

  33. Wasserman S, Faust K (1997) Social network analysis: methods and applications. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aurélien Fichet de Clairfontaine.

Appendix

Appendix

NUTS is an acronym of the French for the “nomenclature of territorial units for statistics”, which is a hierarchical system of regions used by the statistical office of the European Community for the production of regional statistics. At the top of the hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions and then NUTS-2 regions. This study disaggregates Europe’s territory into 255 NUTS-2 regions located in the EU-25 member states (excluding Cyprus and Malta) as well as Norway and Switzerland. We exclude the Spanish North African territories of Ceuta y Melilla, the Portuguese non-continental territories Açores and Madeira, and the French Departments d’Outre-Mer Guadeloupe, Martinique, Guyane Française and Réunion. Thus, we include the following NUTS-2 regions.

Austria Burgenland, Kärnten, Niederösterreich, Oberösterreich, Salzburg, Steiermark, Tirol, Vorarlberg, Wien
Belgium Prov. Antwerpen, Prov. Brabant-Wallon, Prov. Hainaut, Prov. Limburg (B), Prov. Liège, Prov. Luxembourg (B), Prov. Namur, Prov. Oost-Vlaanderen, Prov. Vlaams-Brabant, Prov. West-Vlaanderen, Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest
Czech Jihovýchod, Jihozápad, Moravskoslezsko, Praha, Severovýchod,
    Republic Severozápad, Stredni Morava, Stredni Cechy
Denmark Danmark
Estonia Eesti
Finland Aland, Etelä-Suomi, Itä-Suomi, Länsi-Suomi, Pohjois-Suomi
France Alsace, Aquitaine, Auvergne, Basse-Normandie, Bourgogne, Bretagne, Centre, Champagne-Ardenne, Corse, Franche-Comté, Haute-Normandie, Île-de-France, Languedoc-Roussillon, Limousin, Lorraine, Midi-Pyrénées, Nord-Pas-de-Calais, Pays de la Loire, Picardie, Poitou-Charentes, Provence-Alpes-Côte d’Azur, Rhône-Alpes
Germany Arnsberg, Berlin, Brandenburg, Braunschweig, Bremen, Chemnitz, Darmstadt, Dessau, Detmold, Dresden, Düsseldorf, Freiburg, Giessen, Halle, Hamburg, Hannover, Karlsruhe, Kassel, Koblenz, Köln, Leipzig, Lüneburg, Magdeburg, Mecklenburg-Vorpommern, Mittelfranken, Münster, Niederbayern, Oberbayern, Oberfranken, Oberpfalz, Rheinhessen-Pfalz, Saarland, Schleswig-Holstein, Schwaben, Stuttgart, Thüringen, Trier, Tübingen, Unterfranken, Weser-Ems
Greece Anatoliki Makedonia, Thraki, Attiki, Ipeiros, Voreio Aigaio, Dytiki Ellada, Dytiki Makedonia, Thessalia, Ionia Nisia, Kentriki Makedonia, Kriti, Notio Aigaio, Peloponnisos, Sterea Ellada
Hungary Dél-Alföld, Dél-Dunántúl, Észak-Alföld, Észak-Magyarország, Közep-Dunántúl, Közep-Magyarország, Nyugat-Dunántúl
Ireland Border, Midland and Western, Southern and Eastern
Italy Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Friuli-Venezia Giulia, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Sardegna, Sicilia, Toscana, Trentino-Alto Adige/Südtirol, Umbria, Valle d’Aosta/Vallée d’Aoste, Veneto
Latvia Latvija
Lithuania Lieteva
Luxembourg Luxembourg (Grand-Duché)
Netherlands Drenthe, Flevoland, Friesland, Gelderland, Groningen, Limburg (NL), Noord-Brabant, Noord-Holland, Overijssel, Utrecht, Zeeland, Zuid-Holland
Norway Agder og Rogaland, Hedmark og Oppland, Nord-Norge, Oslo og Akershus, Sør-Østlandet, Trøndelag, Vestlandet
Poland Dolnoślaskie, Kujawsko-Pomorskie, Lubelskie, Lubuskie, Lódzkie, Mazowieckie, Malopolskie, Opolskie, Podkarpackie, Podlaskie, Pomorskie, Ślaskie, Świetokrzyskie, Warmińsko-Mazurskie, Wielkopolskie, Zachodniopomorskie
Portugal Alentejo, Algarve, Centro (P), Lisboa, Norte
Slovakia Bratislavsky Kraj, Stredné Slovensko, Východné Slovensko, Západné Slovensko
Slovenia Slovenija
Spain Andalucía, Aragón, Cantabria, Castilla y León, Castilla-La Mancha, Cataluña, Comunidad Foral de Navarra, Comunidad Valenciana, Comunidad de Madrid, Extremadura, Galicia, Islas Baleares, La Rioja, País Vasco, Principado de Asturias, Región de Murcia
Sweden Mellersta Norrland, Norra Mellansverige, Smaland med Öarna, Stockholm, Sydsverige, Västsverige, Östra Mellansverige, Övre Norrland
Switzerland Espace Mittelland, Nordwestschweiz, Ostschweiz, Région Lemanique,
  Ticino, Zentralschweiz, Zürich
United Kingdom Bedfordshire & Hertfordshire, Berkshire, Buckinghamshire & Oxfordshire, Cheshire, Cornwall & Isles of Scilly, Cumbria, Derbyshire & Nottinghamshire, Devon, Dorset & Somerset, East Anglia, East Riding & North Lincolnshire, East Wales, Eastern Scotland, Essex, Gloucestershire, Wiltshire & North Somerset, Greater Manchester, Hampshire & Isle of Wight, Herefordshire, Worcestershire & Warkwickshire, Highlands and Islands, Inner London, Kent, Lancashire, Leicestershire, Rutland and Northamptonshire, Lincolnshire, Merseyside, North Eastern Scotland, North Yorkshire, Northern Ireland, Northumberland and Tyne and Wear, Outer London, Shropshire & Staffordshire,South Western Scotland, South Yorkshire, Surrey, East & West Sussex, Tees Valley & Durham, West Midlands, West Wales & The Valleys, West Yorkshire

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fichet de Clairfontaine, A., Fischer, M.M., Lata, R. et al. Barriers to cross-region research and development collaborations in Europe: evidence from the fifth European Framework Programme. Ann Reg Sci 54, 577–590 (2015). https://doi.org/10.1007/s00168-015-0667-z

Download citation

JEL Classification

  • C31
  • O39
  • R15