The Annals of Regional Science

, Volume 54, Issue 2, pp 489–509 | Cite as

On the parametric description of the French, German, Italian and Spanish city size distributions

Original Paper


We study the parametric description of the city size distribution of four European countries: France, Germany, Italy and Spain. The parametric models used are the lognormal, the double Pareto lognormal, the normal-Box–Cox and the threshold double Pareto Singh–Maddala (last two of these are defined in this paper). The results are quite regular. The preferred model is always the threshold double Pareto Singh–Maddala in the four countries. However, the dPln is not rejected always for the case of France, and in the case of Italy, the dPln is the runner-up distribution.

JEL Classification

C13 C16 R00 


  1. Anderson G, Ge Y (2005) The size distribution of Chinese cities. Reg Sci Urban Econ 35(6):756–776CrossRefGoogle Scholar
  2. Black D, Henderson V (2003) Urban evolution in the USA. J Econ Geogr 3(4):343–372CrossRefGoogle Scholar
  3. Bosker M, Brakman S, Garretsen H, Schramm M (2008) A century of shocks: the evolution of the German city size distribution 1925–1999. Reg Sci Urban Econ 38(4):330–347CrossRefGoogle Scholar
  4. Box G, Cox D (1964) An analysis of transformations. J R Stat Soc Ser B 26:211–252Google Scholar
  5. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  6. Burnham K, Anderson D (2004) Multimodel inference: understanding AIC and BIC in model selection. sociol methods res 33:261–304CrossRefGoogle Scholar
  7. Burr I (1942) Cumulative frequency functions. Ann Math Stat 13:215–232CrossRefGoogle Scholar
  8. Champernowne D (1953) A model of income distribution. Econ J 63(250):318–351CrossRefGoogle Scholar
  9. Drukker D, Wiggins V (2004) Verifying the solution from a nonlinear solver: a case study: comment. Am Econ Rev 94(1):397–399CrossRefGoogle Scholar
  10. Duranton G (2007) Urban evolutions: the fast, the slow, and the still. Am Econ Rev 97(1):197–221CrossRefGoogle Scholar
  11. Eeckhout J (2004) Gibrat’s law for (all) cities. Am Econ Rev 94(5):1429–1451CrossRefGoogle Scholar
  12. Efron B, Hinkley D (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 65(3):457–482CrossRefGoogle Scholar
  13. Giesen K, Suedekum J (2012) The French overall city size distribution. Reg Dev 36:107–126Google Scholar
  14. Giesen K, Suedekum J (2014) City age and city size. Eur Econ Rev 71:193–208CrossRefGoogle Scholar
  15. Giesen K, Zimmermann A, Suedekum J (2010) The size distribution across all cities-double Pareto lognormal strikes. J Urban Econ 68(2):129–137CrossRefGoogle Scholar
  16. González-Val R, Lanaspa L, Sanz-Gracia F (2013a) Gibrat’s law for cities, growth regressions and sample size. Econ Lett 118:367–369CrossRefGoogle Scholar
  17. González-Val R, Ramos A, Sanz-Gracia F (2013b) The accuracy of graphs to describe size distributions. Appl Econ Lett 20(17):1580–1585CrossRefGoogle Scholar
  18. González-Val R, Ramos A, Sanz-Gracia F, Vera-Cabello M (2013c) Size distribution for all cities: which one is best? Pap Reg Sci (Forthcoming). doi:10.1111/pirs.12037
  19. Ioannides Y, Overman H (2003) Zipf’s law for cities: an empirical examination. Reg Sci Urban Econ 33(2):127–137CrossRefGoogle Scholar
  20. Ioannides Y, Skouras S (2013) US city size distribution: Robustly Pareto, but only in the tail. J Urban Econ 73:18–29CrossRefGoogle Scholar
  21. Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  22. McCullough B, Vinod H (2003) Verifying the solution from a nonlinear solver: a case study. Am Econ Rev 93(3):873–892CrossRefGoogle Scholar
  23. McCullough B, Vinod H (2004) Verifying the solution from a nonlinear solver: a case study: reply. Am Econ Rev 94(1):400–403CrossRefGoogle Scholar
  24. Pareto V (1896) Cours d’economie politique. Droz, GenevaGoogle Scholar
  25. Parr J, Suzuki K (1973) Settlement populations and the lognormal distribution. Urban Stud 10(3):335–352CrossRefGoogle Scholar
  26. Ramos A, Sanz-Gracia F, González-Val R (2014) On the parametric description of US city size distribution: new empirical evidence. In: Working paper. Available at Munich RePEC.
  27. Razali N, Wah Y (2011) Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Model Anal 2:21–33Google Scholar
  28. Reed W (2001) The Pareto, Zipf and other power laws. Econ Lett 74:15–19CrossRefGoogle Scholar
  29. Reed W (2002) On the rank-size distribution for human settlements. J Reg Sci 42:1–17CrossRefGoogle Scholar
  30. Reed W (2003) The Pareto law of incomes-an explanation and an extension. Phys A 319:469–486CrossRefGoogle Scholar
  31. Reed W, Jorgensen M (2004) The double Pareto-lognormal distribution-a new parametric model for size distributions. Commun Stat Theory Methods 33(8):1733–1753CrossRefGoogle Scholar
  32. Rozenfeld H, Rybski D, Andrade J, Batty M, Stanley H, Makse H (2008) Laws of population growth. Proc Nat Acad Sci 105(48):18702–18707CrossRefGoogle Scholar
  33. Rozenfeld H, Rybski D, Gabaix X, Makse H (2011) The area and population of cities: new insights from a different perspective on cities. Am Econ Rev 101:2205–2225CrossRefGoogle Scholar
  34. Schluter C, Trede (2013) Gibrat, Zipf, Fisher and Tippet: city size and growth distributions reconsidered. In: Working paper 27/2013 center for quantitative economics WWU MünsterGoogle Scholar
  35. Shachar R, Nalebuff B (2004) Verifying the solution from a nonlinear solver: a case study: comment. Am Econ Rev 94(1):382–390CrossRefGoogle Scholar
  36. Singh S, Maddala G (1976) A function for size distribution of incomes. Econometrica 44(5):963–970CrossRefGoogle Scholar
  37. Skouras S (2009) Explaining Zipf’s law for US cities. In: Working paper. Available at SSRN.
  38. Soo K (2005) Zipf’s Law for cities: a cross-country investigation. Reg Sci Urban Econ 35(3):239–263CrossRefGoogle Scholar
  39. Zipf G (1949) Human behavior and the principle of least effort. Addison-Wesley Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Economic AnalysisUniversidad de ZaragozaZaragozaSpain

Personalised recommendations