Skip to main content

Advertisement

Log in

A normative analysis of transport policies in a footloose capital model with interregional and intraregional transportation costs

  • Original Paper
  • Published:
The Annals of Regional Science Aims and scope Submit manuscript

Abstract

We introduce a distinction between interregional and intraregional transportation costs in a footloose capital model. This allows assessing more precisely the effects of different types of transport policies on the spatial distribution of activities. From a normative point of view, we find that, in the absence of regulation, the concentration of industrial activity is too high in the center. We show what set of interregional and intraregional transport policies improves the equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alonso W (1964) Location and land use. Harvard University Press, Cambridge

    Google Scholar 

  • Bairoch P (1997) Victoires et déboires. Histoire économique et sociale du monde du XVIe siècle à nos jours. Gallimard, Paris

    Google Scholar 

  • Baldwin R, Forslid R, Martin P, Ottaviano G, Robert-Nicoud F (2003) Economic geography and public policy. Princeton University Press, Princeton

    Google Scholar 

  • Behrens K, Gaigné C, Ottaviano G, Thisse J-F (2006) How density economies in international transportation link the internal geography of trading partners. J Urban Econ 60(2):248–263

    Article  Google Scholar 

  • Behrens K, Thisse J-F (2007) Regional economics: a new economic geography perspective. Reg Sci Urban Econ 37(4):457–465

    Article  Google Scholar 

  • Brülhart M, Crozet M, Koenig P (2004) Enlargement and the EU periphery: the impact of changing market potential. World Econ 27(6):853–875

    Article  Google Scholar 

  • Charlot S, Gaigné C, Robert-Nicoud F, Thisse J-F (2006) Agglomeration and welfare: the core-periphery model in the light of Bentham, Kaldor, and Rawls. J Public Econ 90(1):325–347

    Article  Google Scholar 

  • Crozet M, Koenig-Soubeyran P (2004) Trade liberalization and the internal geography of countries. In: Mucchielli J-L, Mayer T (eds) Multinational firms’ location and the new economic geography. Edward Elgar, Northampton

    Google Scholar 

  • Fratesi U (2008) Regional policy from a supra-regional perspective. Ann Reg Sci 42(3):681–703

    Article  Google Scholar 

  • Harris C (1954) The market as a factor in the localization of industry in the United States. Ann Assoc Am Geogr 44:315–348

    Google Scholar 

  • Head K, Mayer T (2004) Market potential and the location of Japanese firms in the European Union. Rev Econ Stat 86(4):959–972

    Article  Google Scholar 

  • Helpman E, Krugman P (1985) Market structure and foreign trade. MIT Press, Cambridge

    Google Scholar 

  • Krugman P (1980) Scale economies, product differentiation and the pattern of trade. Am Econ Rev 70(5):950–959

    Google Scholar 

  • Krugman P (1991) Increasing returns and economic geography. J Polit Econ 99(3):493–499

    Article  Google Scholar 

  • Lafourcade M, Thisse J-F (2011) New economic geography: the role of transport costs. In: de Palma A, Lindsey R, Quinet E, Vickerman R (eds) Handbook in transport economics. Edward Elgar, Northampton

    Google Scholar 

  • Martin P (1998) Can regional policies affect growth and geography in Europe. World Econ 21(6):757–774

    Article  Google Scholar 

  • Martin P (1999) Public policies, regional equalities and growth. J Public Econ 73(1):85–105

    Article  Google Scholar 

  • Martin P (2000) The role of public policy in the process of regional convergence. EIB Papers

  • Martin P, Rogers C (1995) Industrial location and public infrastructure. J Int Econ 39(3):335–351

    Article  Google Scholar 

  • Puga D (1999) The rise and fall of regional inequalities. Eur Econ Rev 43(2):303–334

    Article  Google Scholar 

  • Tabuchi T (1998) Urban agglomeration and dispersion: a synthesis of Alonso and Krugman. J Urban Econ 44(3):333–351

    Article  Google Scholar 

  • Unctad (2004) World Trade Report 2004

Download references

Acknowledgments

Paul Chiambaretto would like to thank Thierry Mayer for his useful comments on the first draft of this paper. Jacques Thisse also provided useful comments on the topic treated here. We also benefited from the comments of Elijah DePalma. André De Palma and Stef Proost acknowledge the support of the French PREDIT research programme no 09 MT CV 14 and of the Sustaincity project (FP7- EU). The third author thanks also FWO Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Chiambaretto.

Appendices

Appendix 1: Proof of Proposition 1

We want to prove that if \(\phi _\mathrm{AB} <\left( {1-\theta } \right) \phi _\mathrm{BB} \), then \(\lambda \in [0,1]\)

1.1 Proof of \(\lambda >0\)

We know that: \(\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right) <0\). If \(\lambda >0\), then we must have \(\Psi \le 0\). We use proof by contradiction. If \(\Psi >0\), then we have

$$\begin{aligned} \Psi&= \left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \phi _\mathrm{AB} +\theta \left( {\phi _\mathrm{AB} -\phi _\mathrm{AA} } \right) \phi _\mathrm{BB} >0\\&\Leftrightarrow \left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \phi _\mathrm{AB} >\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \phi _\mathrm{BB}. \end{aligned}$$

Since \(1-\theta <\theta \) and \(\phi _\mathrm{BB} -\phi _\mathrm{AB} <\phi _\mathrm{AA} -\phi _\mathrm{AB} \) and since \(\phi _\mathrm{AB} <\phi _\mathrm{BB} \), the previous line cannot be true. Thus, \(\Psi \le 0\), so that \(\lambda \ge 0\).

1.2 Proof of \(\lambda <1\)

We know that \(\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right) <0\). If \(\lambda \le 1\), then we must have:

$$\begin{aligned}&\left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \phi _\mathrm{AB} +\theta \left( {\phi _\mathrm{AB} -\phi _\mathrm{AA} } \right) \phi _\mathrm{BB} >\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right) \\&\quad \Leftrightarrow \left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \phi _\mathrm{AB} +\left( {\phi _\mathrm{AB} -\phi _\mathrm{AA} } \right) \left[ {\theta \phi _\mathrm{BB} +\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right] >0. \end{aligned}$$

Since\(\left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) >0\) and \(\left( {\phi _\mathrm{AB} -\phi _\mathrm{AA} } \right) <0\), we must have \(\theta \phi _\mathrm{BB} +\phi _\mathrm{AB} -\phi _\mathrm{BB} <0,\) which is true if \(\phi _\mathrm{AB} <\left( {1-\theta } \right) \phi _\mathrm{BB}.\)

1.3 Proof that if \(\phi _\mathrm{AB} >\left( {1-\theta } \right) \phi _\mathrm{BB} \) , then \(\lambda >1\)

We know that: \(\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right) <0\). If \(\lambda >1\), then we must have:

$$\begin{aligned}&\left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \phi _\mathrm{AB} +\theta \left( {\phi _\mathrm{AB} -\phi _\mathrm{AA} } \right) \phi _\mathrm{BB} <\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right) \\&\quad \Leftrightarrow \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AA} -\theta \phi _\mathrm{AB} } \right) <\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \phi _\mathrm{BB}. \end{aligned}$$

Since \(\phi _\mathrm{AB} >\left( {1-\theta } \right) \phi _\mathrm{BB} \), then \(-\phi _\mathrm{AB} <\left( {\theta -1} \right) \phi _\mathrm{BB} \), so that we have

$$\begin{aligned} \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AA} -\theta \phi _\mathrm{AB} } \right) <\theta \phi _\mathrm{BB} (\phi _\mathrm{AA} -\theta \phi _\mathrm{AB} ). \end{aligned}$$

Moreover, we note that: \(\phi _\mathrm{AA} -\theta \phi _\mathrm{AB} <\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \). Thus, we conclude that: \(\left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AA} -\theta \phi _\mathrm{AB} } \right) <\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \phi _\mathrm{BB} \), which implies that if \(\phi _\mathrm{AB} >\left( {1-\theta } \right) \phi _\mathrm{BB} \), then \(\lambda >1\).

Appendix 2: Proof of Proposition 2

Impact of \(\phi _\mathrm{AB} \): Improving the quality of the interregional infrastructure is equivalent to an increase in \(\phi _\mathrm{AB} \).

$$\begin{aligned} \frac{\partial \lambda }{\partial \phi _\mathrm{AB} }\!=\!\frac{\left[ {\left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -2\phi _\mathrm{AB} } \right) +\theta \phi _\mathrm{BB} } \right] \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right) -\Psi [\phi _\mathrm{AA} +\phi _\mathrm{BB} - 2\phi _\mathrm{AB} ]}{\left[ {\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( \phi _\mathrm{AB} -\phi _\mathrm{BB} \right) } \right] ^{2}} \end{aligned}$$

We have \(\frac{\partial \lambda }{\partial \phi _\mathrm{AB} }>0, \)if the condition \(\frac{\phi _\mathrm{AA} }{\phi _\mathrm{AB} }>2\theta \) is respected (which always holds under our assumptions). Using this hypothesis, we observe that the improvement of the infrastructure between regions will strengthen the concentration in the center.

Impact of \(\phi _\mathrm{AA} \): We measure the effects of an improvement of infrastructures in the center. We anticipate that it will lead to a higher concentration in the center.

$$\begin{aligned} \frac{\partial \lambda }{\partial \phi _\mathrm{AA} }=\frac{-\theta \phi _\mathrm{BB} \left[ {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right] \left[ {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right] -[\phi _\mathrm{AB} -\phi _\mathrm{BB} ]\Psi }{\left[ {\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AB} -\phi _\mathrm{BB}} \right) } \right] ^{2}} \end{aligned}$$

We obtain \(\frac{\partial \lambda }{\partial \phi _\mathrm{AA} }>0\). As anticipated, we conclude that the higher quality of infrastructure in the center will increase the concentration.

Impact of \(\phi _\mathrm{BB} \): Since the other actions on infrastructures have led to a higher concentration, we anticipate that the reduction in transport costs in the periphery will lead to a reduction in the concentration in the center.

$$\begin{aligned} \frac{\partial \lambda }{\partial \phi _\mathrm{BB} }=\frac{\left[ {\left( {1-\theta } \right) \phi _\mathrm{AB} +\theta \left( {\phi _\mathrm{AB} -\phi _\mathrm{AA} } \right) } \right] \left[ {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right] \left[ {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right] +[\phi _\mathrm{AA} -\phi _\mathrm{AB} ]\Psi }{\left[ {\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) \left( {\phi _\mathrm{AB} -\phi _\mathrm{BB} } \right) } \right] ^{2}} \end{aligned}$$

We find that \(\frac{\partial \lambda }{\partial \phi _\mathrm{BB} }<0\) if we have \(\phi _\mathrm{AB} >\theta \phi _\mathrm{AA} \) (which holds under our hypotheses).The better quality of infrastructure in the periphery will lead to a relocation of firms from the center to the periphery.

Appendix 3: Remarks concerning the value of \(\zeta \)

First, we want to show that \(0<\zeta <1.\)

We can rewrite \(\zeta \) as:

$$\begin{aligned} \zeta =\left[ {\frac{\left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) }{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }} \right] ^{\frac{-1}{\alpha \mu +1}}=\left[ {\Omega \frac{\phi _\mathrm{BB} }{\phi _\mathrm{AA} }} \right] ^{\frac{-1}{\alpha \mu +1}}. \end{aligned}$$

Since \(0<\Omega <1\) and \(\phi _\mathrm{BB} <\phi _\mathrm{AA} \), we conclude that \(0<\zeta <1.\)

Second, we want to show that \(\zeta >1-\theta .\)

We use proof by contradiction. Assume that \(1-\theta >\zeta \), so that we must have:

$$\begin{aligned}&\!\!\!1-\theta \!>\!\left[ {\frac{\left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) }{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }} \right] ^{\frac{-1}{\alpha \mu +1}} \Leftrightarrow 1\!-\!\theta \!>\!(1\!-\!\theta )^{\frac{-1}{\alpha \mu +1}}\left[ {\frac{\left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) }{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }} \right] ^{\frac{-1}{\alpha \mu +1}}\\&\!\!\!\quad \Leftrightarrow (1-\theta )^{\frac{1}{\alpha \mu +1}+1}>\left[ {\frac{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }{\left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) }} \right] ^{\frac{1}{\alpha \mu +1}}. \end{aligned}$$

Since \(\frac{1}{\alpha \mu +1}=\frac{\sigma -1}{\sigma -1-\mu }\) and since \(0<1-\theta <1\) we then have: \((1-\theta )^{\frac{1}{\alpha \mu +1}}>(1-\theta )^{\frac{1}{\alpha \mu +1}+1}.\)

We can then rewrite the inequality:

$$\begin{aligned} (1\!-\!\theta )^{\frac{1}{\alpha \mu +1}}\!\!>\!\!\left[ {\frac{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }{\left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) }} \right] ^{\frac{1}{\alpha \mu +1}}\!\mathop \Leftrightarrow \limits _ 1-\theta \!>\!\frac{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }{\left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) }\mathop \Leftrightarrow \limits _ 1\!>\!\frac{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }{\left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) }, \end{aligned}$$

which is false. Thus, must have \(1-\theta <\zeta .\)

Third, with \(1-\theta <\zeta <1\), we then have \(\lambda ^\mathrm{o}\in [0,1]\)

We know that \(1-\theta <\zeta \). Since we have shown that \(\left( {1-\theta } \right) \phi _\mathrm{BB} >\phi _\mathrm{AB} \), we now have: \(\zeta \phi _\mathrm{BB} >\phi _\mathrm{AB}.\)

This allows us to deduce:

$$\begin{aligned} \lambda ^\mathrm{o}=\frac{\zeta \phi _\mathrm{BB} -\phi _\mathrm{AB} }{\zeta \phi _\mathrm{BB} -\phi _\mathrm{AB} +\phi _\mathrm{AA} -\zeta \phi _\mathrm{AB} }\in [0,1]. \end{aligned}$$

Appendix 4: Impact of the weights on the optimal value of industry share

We wish to assess the impact of the weights in the total utility function on the optimal value of the industry share. To do this, we normalize the weight for region A to 1 and give a weight \(\eta \) to region B. The indirect utility function to be maximized is then:

$$\begin{aligned} \begin{aligned} \widetilde{W}&=\theta V_\mathrm{A} +\left( {1-\theta } \right) \eta V_\mathrm{B}\\ \quad \mathop {\max }\limits _\lambda \widetilde{W}&\Leftrightarrow \mathop {\text{ max }}\limits _\lambda \left\{ W=\theta \left[ {\left( {\phi _\mathrm{AA} \lambda +\phi _\mathrm{AB} \left( {1-\lambda } \right) } \right) ^{-\alpha \mu }} \right] \right. \\&\quad \left. +\left( {1-\theta } \right) \eta \left[ {\left( {\phi _\mathrm{AB} \lambda +\phi _\mathrm{BB} \left( {1-\lambda } \right) } \right) ^{-\alpha \mu }} \right] \right\} \end{aligned} \end{aligned}$$

The first-order condition gives us the following value:

$$\begin{aligned} \lambda ^\mathrm{o}=\frac{\widetilde{\zeta }\phi _\mathrm{BB} -\phi _\mathrm{AB} }{\widetilde{\zeta }\phi _\mathrm{BB} -\phi _\mathrm{AB} +\phi _\mathrm{AA} -\widetilde{\zeta }\phi _\mathrm{AB} }, \end{aligned}$$

where \(\widetilde{\zeta }=\left[ {\frac{\eta \left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) }{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }} \right] ^{\frac{-1}{\alpha \mu +1}}\).

It is easy to show that \(\frac{\partial \widetilde{\zeta }}{\partial \eta }<0\). Moreover, one can prove that \(\frac{\partial \lambda ^\mathrm{o}}{\partial \widetilde{\zeta }}>0\). Knowing the signs of these two derivatives, we conclude that an increase in \(\eta \) will lead to a reduction of \(\lambda ^\mathrm{o}\).

Appendix 5: Proof of Proposition 3

The spatial equilibrium is given by the value \(\lambda ^\mathrm{Eq}\):

$$\begin{aligned} \lambda ^\mathrm{Eq}&= \frac{\left( {1-\theta } \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \phi _\mathrm{AB} +\theta \left( {\phi _\mathrm{AB} -\phi _\mathrm{AA} } \right) \phi _\mathrm{BB} }{\left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) (\phi _\mathrm{AB} -\phi _\mathrm{BB} )}\\ \lambda ^\mathrm{Eq}&= \frac{\theta \phi _\mathrm{BB} }{\phi _\mathrm{BB} -\phi _\mathrm{AB} }+\frac{\theta \phi _\mathrm{AB} -\phi _\mathrm{AB} }{\phi _\mathrm{AA} -\phi _\mathrm{AB} }. \end{aligned}$$

We wish to compare \(\lambda ^\mathrm{Eq}\) with the optimal share of firms \(\lambda ^\mathrm{o}\) that can be rewritten as:

$$\begin{aligned} \lambda ^\mathrm{o}=\frac{\zeta \phi _\mathrm{BB} }{\phi _\mathrm{AA} -\phi _\mathrm{AB} +\zeta (\phi _\mathrm{BB} -\phi _\mathrm{AB} )}+\frac{-\phi _\mathrm{AB} }{\phi _\mathrm{AA} -\phi _\mathrm{AB} +\zeta (\phi _\mathrm{BB} -\phi _\mathrm{AB} )} \end{aligned}$$

First, we compare the second parts of the two equations. Since \(\zeta \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) >0\) and \(\theta \phi _\mathrm{AB} >0\), then we observe that:

$$\begin{aligned} \frac{\theta \phi _\mathrm{AB} -\phi _\mathrm{AB} }{\phi _\mathrm{AA} -\phi _\mathrm{AB} }>\frac{-\phi _\mathrm{AB} }{\phi _\mathrm{AA} -\phi _\mathrm{AB} +\zeta (\phi _\mathrm{BB} -\phi _\mathrm{AB} )}. \end{aligned}$$

Second, we wish to compare the first parts of the equations. Let us prove by contradiction that

$$\begin{aligned} \frac{\theta \phi _\mathrm{BB} }{\phi _\mathrm{BB} -\phi _\mathrm{AB} }>\frac{\zeta \phi _\mathrm{BB} }{\phi _\mathrm{AA} -\phi _\mathrm{AB} +\zeta (\phi _\mathrm{BB} -\phi _\mathrm{AB} )} \end{aligned}$$

To do so, we make the hypothesis that:

$$\begin{aligned} \frac{\theta \phi _\mathrm{BB} }{\phi _\mathrm{BB} -\phi _\mathrm{AB} }<\frac{\zeta \phi _\mathrm{BB} }{\phi _\mathrm{AA} -\phi _\mathrm{AB} +\zeta (\phi _\mathrm{BB} -\phi _\mathrm{AB} )}, \end{aligned}$$

which implies that:

$$\begin{aligned}&\theta \left[ {\phi _\mathrm{AA} -\phi _\mathrm{AB} +\zeta \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) } \right] <\zeta \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) \\&\quad \Leftrightarrow \theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) +\zeta \left( {\theta -1} \right) \left( {\phi _\mathrm{BB} -\phi _\mathrm{AB} } \right) <0\\&\quad \Leftrightarrow \frac{\theta \left( {\phi _\mathrm{AA} -\phi _\mathrm{AB} } \right) }{\left( {1-\theta } \right) (\phi _\mathrm{BB} -\phi _\mathrm{AB} )}<\zeta \\&\quad \Leftrightarrow _ 1<\zeta . \end{aligned}$$

This is a contradiction, since we know that \(0<\zeta <1\). Thus, we must have:

$$\begin{aligned} \frac{\theta \phi _\mathrm{BB} }{\phi _\mathrm{BB} -\phi _\mathrm{AB} }>\frac{\zeta \phi _\mathrm{BB} }{\phi _\mathrm{AA} -\phi _\mathrm{AB} +\zeta (\phi _\mathrm{BB} -\phi _\mathrm{AB} )}. \end{aligned}$$

These two inequalities lead us to the conclusion that: \(\lambda ^{Eq}>\lambda ^\mathrm{o}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiambaretto, P., De Palma, A. & Proost, S. A normative analysis of transport policies in a footloose capital model with interregional and intraregional transportation costs. Ann Reg Sci 51, 811–831 (2013). https://doi.org/10.1007/s00168-013-0563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00168-013-0563-3

JEL Classification

Navigation