Skip to main content

Advertisement

Log in

Pullout strength of tibial graft fixation in anterior cruciate ligament replacement with a patellar tendon graft: interference screw versus staple fixation in human knees

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The endoscopic single incision technique for anterior cruciate ligament (ACL) reconstruction with a femoral half-tunnel may lead to a graft/tunnel mismatch and subsequent protrusion of the block from the tibial tunnel. The typical tibial fixation with an interference screw is not possible in these cases. Fixation with staples in a bony groove inferior to the tunnel outlet can be used as an alternative technique. Current literature does not provide biomechanical data of either fixation technique in a human model. This study was performed to evaluate the primary biomechanical parameters of this technique compared with a standard interference screw fixation of the block. Fifty-five fresh-frozen relatively young (mean age 44 years) human cadaver knee joints were used. Grafts were harvested from the patellar tendon midportion with bone blocks of 25 mm length and 9 mm width. A 10-mm tibial tunnel was drilled from the anteromedial cortex to the center of the tibial insertion of the ACL. Three different sizes of interference screws (7 × 30, 9 × 20, 9 × 30 mm) were chosen as a standard control procedure (n = 40). For tibial bone-block fixation the graft was placed through the tunnel, and the screw was then inserted on the cancellous or the cortical surface, respectively. Fifteen knees were treated by staple fixation. A groove was created inferior to the tunnel outlet with a chisel. The bone block was fixed in this groove with two barbed stainless steel staples. Tensile testing in both groups was carried out under an axial load parallel to the tibial tunnel in a Zwick testing machine with a velocity of 1 mm/s. Dislocation of the graft and stiffness were calculated at 175 N load. Maximum load to failure using interference screws varied between 506 and 758 N. Load to failure using staples was 588 N. Dislocation of the graft ranged between 3.8 and 4.7 mm for interference screw fixation and was 4.7 mm for staples. Stiffness calculated at 175 N load was significantly higher in staple fixation. With either fixation technique, the recorded failure loads were sufficient to withstand the graft loads which are to be expected during the rehabilitation period. Staple fixation of the bone block outside of the tunnel resulted in a fixation strength comparable to interference screw fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 2 September 1996 Accepted: 30 January 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerich, T., Cassim, A., Lattermann, C. et al. Pullout strength of tibial graft fixation in anterior cruciate ligament replacement with a patellar tendon graft: interference screw versus staple fixation in human knees. Knee Surgery 5, 84–88 (1997). https://doi.org/10.1007/s001670050032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001670050032

Navigation