Abstract
Purpose
The aim of this retrospective cohort study was to investigate whether the apex of the deep cartilage (ADC) could help surgeons position the femoral tunnel accurately in remnant-preserving anterior cruciate ligament (ACL) reconstruction (ACLR).
Methods
In the current retrospective cohort study, a total of 134 patients who underwent ACLR between 2016 and 2020 were included. The femoral tunnel position was located using ADC as the landmark. The patients were divided into two groups: the remnant-preserving group (RP group, n = 68) underwent remnant-preserving ACLR, and the nonremnant group (NRP group, n = 66) underwent traditional ACLR with remnant removal. Postoperatively, the femoral tunnel position was evaluated on 3D-CT. The length from the ADC to the shallow cartilage margin (L) and to the centre of the femoral tunnel (l) and the length from the centre of the femoral tunnel to a low cartilage ratio in the direction from high to low (H) were measured.
Results
The l/L values of the RP and NRP groups were both 0.4 ± 0.1 after rounding (n.s.), and the H values were 9.3 ± 1.6 mm and 9.3 ± 1.7 mm, respectively (n.s.). There was no significant difference in l/L or H between the two groups. The estimation plot also showed high consistency of H and l/L of the two groups. The inter- and intraobserver reliability of I, L, l/L, and H were almost perfect.
Conclusions
The apex of the deep cartilage is a good landmark for positioning the femoral tunnel in remnant-preserving ACL reconstruction.
Level of evidence
Level III.
This is a preview of subscription content, access via your institution.





Data availability
The authors confirm that the data supporting the findings of this study are available within the article.
References
Asai K, Nakase J, Yoshimizu R, Kimura M, Tsuchiya H (2021) Does remnant tissue preservation in anterior cruciate ligament reconstruction influence the creation of the rectangular femoral tunnel? J Orthop Surg (Hong Kong) 29:23094990211061250
Bhattacharyya R, Ker A, Fogg Q, Spencer SJ, Joseph J (2018) Lateral intercondylar ridge: is it a reliable landmark for femoral ACL insertion?: An anatomical study. Int J Surg 50:55–59
Bird JH, Carmont MR, Dhillon M et al (2011) Validation of a new technique to determine midbundle femoral tunnel position in anterior cruciate ligament reconstruction using 3-dimensional computed tomography analysis. Arthroscopy 27:1259–1267
Buscayret F, Temponi EF, Saithna A, Thaunat M, Sonnery-Cottet B (2017) Three-dimensional CT evaluation of tunnel positioning in ACL reconstruction using the single anteromedial bundle biological augmentation (SAMBBA) technique. Orthop J Sports Med 5:2325967117706511
Cho E, Chen J, Xu C, Zhao J (2022) Remnant preservation may improve proprioception after anterior cruciate ligament reconstruction. J Orthop Traumatol 23:22. https://doi.org/10.1186/s10195-022-00641-y
Crain EH, Fithian DC, Paxton EW, Luetzow WF (2005) Variation in anterior cruciate ligament scar pattern: does the scar pattern affect anterior laxity in anterior cruciate ligament-deficient knees? Arthroscopy 21:19–24
da SilveiraFranciozi CE, Ingham SJ, Gracitelli GC, Luzo MV, Fu FH, Abdalla RJ (2014) Updates in biological therapies for knee injuries: anterior cruciate ligament. Curr Rev Musculoskelet Med 7:228–238
Dejour D, Ntagiopoulos PG, Saggin PR, Panisset JC (2013) The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29:491–499
Dong Y, Tang J, Cui P et al (2022) Reconstruction of the anterior cruciate ligament using ruler-assisted positioning of the femoral tunnel relative to the posterior apex of the deep cartilage: a single-center case series. J Knee Surg 35:1467–1473
El-Desouky MA, Ezzat M, Abdelrazek BH (2022) Clinical outcomes in stump-preserving versus stump-sacrificing anterior cruciate ligament reconstruction; a randomized controlled study. BMC Musculoskelet Disord 23:703. https://doi.org/10.1186/s12891-022-05665-3
Fox MA, Zsidai B, Dadoo S, Greiner JJ, Musahl V (2023) Anatomic anterior cruciate ligament reconstruction. Arthroscopy 39:1968–1970
Franciozi CE, Minami FK, Ambra LF, Galvão P, Schumacher FC, Kubota MS (2022) Remnant preserving ACL reconstruction with a functional remnant is related to improved laxity but not to improved clinical outcomes in comparison to a nonfunctional remnant. Knee Surg Sports Traumatol Arthrosc 30:1543–1551
Han Y, Hart A, Martineau PA (2014) Is the clock face an accurate, precise, and reliable measuring tool for anterior cruciate ligament reconstruction? Arthroscopy 30:849–855
Hart A, Han Y, Martineau PA (2015) The apex of the deep cartilage: a landmark and new technique to help identify femoral tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy 31:1777–1783
Huang H, Nagao M, Nishio H et al (2021) Remnant preservation provides good clinical outcomes after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 29:3763–3772
Igdir V, Gencer B, Dogan O, Caliskan E, Orhan A, DemirOzbudak S (2023) The effects of remnant-preserving anterior cruciate ligament reconstruction on proprioception: a prospective comparative study. Acta Orthop Traumatol Turc 57:109–115
Kim BH, Kim JI, Lee O, Lee KW, Lee MC, Han HS (2018) Preservation of remnant with poor synovial coverage has no beneficial effect over remnant sacrifice in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:2345–2352
Koga H, Muneta T, Yagishita K et al (2015) Evaluation of a behind-remnant approach for femoral tunnel creation in remnant-preserving double-bundle anterior cruciate ligament reconstruction—comparison with a standard approach. Knee 22:249–255
Koga H, Muneta T, Yagishita K et al (2014) Effect of femoral tunnel position on graft tension curves and knee stability in anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22:2811–2820
Kosy JD, Walmsley K, Gordon EA et al (2021) Remnant preservation does not affect accuracy of tibial tunnel positioning in single-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 29:1157–1163
Koyama S, Tensho K, Shimodaira H et al (2022) A new remnant preservation technique reduces bone tunnel enlargement after anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 30:2020–2028
Lee BI, Kwon SW, Kim JB, Choi HS, Min KD (2008) Comparison of clinical results according to amount of preserved remnant in arthroscopic anterior cruciate ligament reconstruction using quadrupled hamstring graft. Arthroscopy 24:560–568
Lee SH, Lee ES, Ko TW, Lee YS (2019) Femoral tunnel placement in single-bundle, remnant-preserving anterior cruciate ligament reconstruction using a posterior trans-septal portal. Knee 26:628–635
Liu W, Wu Y, Wang X et al (2022) ACL stump and ACL femoral landmarks are equally reliable in ACL reconstruction for assisting ACL femoral tunnel positioning. Knee Surg Sports Traumatol Arthrosc 31:219–228
Liu Y, Li C, Ma N et al (2022) Proprioceptive and clinical outcomes after remnant preserved anterior cruciate ligament reconstruction: assessment with minimal confounding factors. Orthop Surg 14:44–54
Marwan Y, Böttcher J, Laverdière C et al (2020) Three-dimensional magnetic resonance imaging for guiding tibial and femoral tunnel position in anterior cruciate ligament reconstruction: a cadaveric study. Orthop J Sports Med 8:2325967120909913
Matava MJ, Arciero RA, Baumgarten KM et al (2015) Multirater agreement of the causes of anterior cruciate ligament reconstruction failure: a radiographic and video analysis of the MARS cohort. Am J Sports Med 43:310–319
Mehta V, Petsche T, Rawal AM (2017) Inter- and intrarater reliability of the femoral tunnel clock-face grading system during anterior cruciate ligament reconstruction. Arthroscopy 33:394–397
Morgan JA, Dahm D, Levy B, Stuart MJ (2012) Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg 25:361–368
Muneta T, Koga H, Ju YJ, Horie M, Nakamura T, Sekiya I (2013) Remnant volume of anterior cruciate ligament correlates preoperative patients’ status and postoperative outcome. Knee Surg Sports Traumatol Arthrosc 21:906–913
Musahl V, Engler ID, Nazzal EM et al (2022) Current trends in the anterior cruciate ligament part II: evaluation, surgical technique, prevention, and rehabilitation. Knee Surg Sports Traumatol Arthrosc 30:34–51
Okutan AE, Kalkışım M, Gürün E, Ayas MS, Aynacı O (2022) Tibial slope, remnant preservation, and graft size are the most important factors affecting graft healing after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 30:1584–1593
Seo SS, Kim CW, Lee CR et al (2020) Intraoperative fluoroscopy reduces the variability in femoral tunnel placement during single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 28:629–636
Shi W, Zhang J, Meng Q et al (2022) The apex of the deep cartilage is a stable landmark to evaluate the femoral tunnel position in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 3:256–263
Shimodaira H, Tensho K, Koyama S et al (2022) Effect of a new remnant-preserving technique with anatomical double-bundle anterior cruciate ligament reconstruction on MRI-based graft maturity: a comparison cohort study. Knee Surg Sports Traumatol Arthrosc 31:2394–2405
Suh DW, Yeo WJ, Han SB, So SY, Kyung BS (2022) Remnant preservation with tensioning can improve the clinical outcome after anterior cruciate ligament reconstruction. J Orthop Surg (Hong Kong) 30:23094990211073376
Sun Y, Huang Z, Zhang P et al (2023) Comparative study of graft healing in 2 years after “tension suspension” remnant-preserving and non-remnant-preserving anatomical reconstruction for sherman type II anterior cruciate ligament injury. J Pers Med 13:477. https://doi.org/10.3390/jpm13030477
van der List JP, Mintz DN, DiFelice GS (2017) The location of anterior cruciate ligament tears: a prevalence study using magnetic resonance imaging. Orthop J Sports Med 5:2325967117709966
van Keulen LZ, Hoogeslag RAG, Brouwer RW, Huis In ‘t Veld R, Verdonschot N (2022) The importance of continuous remnant preservation in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 30:1818–1827
Weiler A, Wagner M, Kittl C (2018) The posterior horn of the lateral meniscus is a reliable novel landmark for femoral tunnel placement in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26:1384–1391
Wright RW, Huston LJ, Spindler KP et al (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 38:1979–1986
Yanagisawa S, Kimura M, Hagiwara K et al (2018) The remnant preservation technique reduces the amount of bone tunnel enlargement following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:491–499
Yanagisawa S, Kimura M, Hagiwara K et al (2019) The relationship between the clinical results and the remnant type following anterior cruciate ligament reconstruction using a hamstring tendon. J Orthop Surg (Hong Kong) 27:2309499019837653
Funding
This work was supported by grants from Beijing Nova Program (No. Z201100006820011), Beijing Nova Program Cross Cooperation Project (No. Z211100002121015).
Author information
Authors and Affiliations
Contributions
Conceptualization and surgical data provision: SW, MY; data collection: ZK, GY, MQ; Statistical analysis: ZK, MQ; Original draft preparation: ZK, ZJ; supervision and draft revision: YY, LP, WC, MY, SW.
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, K., Meng, Q., Zhang, J. et al. The apex of the deep cartilage is a stable landmark to position the femoral tunnel during remnant-preserving anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc (2023). https://doi.org/10.1007/s00167-023-07656-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00167-023-07656-w