Abstract
Purpose
Bone marrow aspirate concentrate can be used as an additive to surgical treatment of osteochondral lesions of the talus. This systematic literature review aims to study the effect of the additional use of bone marrow aspirate concentrate on top of a surgical treatment for osteochondral lesions of the talus on clinical outcomes compared to surgical treatment alone.
Methods
An online literature search was conducted using PubMed (Medline), Embase (Ovid), and the Cochrane library for all studies comparing a surgical intervention with bone marrow aspirate concentrate, with a surgical intervention without bone marrow aspirate concentrate. The methodological quality was rated according to the methodological index for non-randomised studies checklist. The primary outcome measure were clinical outcomes. Secondary outcome measures consisted of revision rate, complication rate, radiographic outcome measures and histological analyses. Subgroups were created based on type of surgical intervention used in the studies. If multiple articles were included in a subgroup, a linear random-effects model was used to compare the bone marrow aspirate concentrate-augmented group with the control group.
Results
Out of 1006 studies found, eight studies with a total of 718 patients were included. The methodological quality, assessed according to the methodological index for non-randomised studies checklist, was weak. A significantly better functional outcome measures (p < 0.05) was found in the subgroup treated with bone marrow stimulation + bone marrow aspirate concentrate compared to the group treated with bone marrow stimulation alone, based on three non-blinded studies. No significant differences regarding clinical outcomes were found in the subgroups comparing matrix-induced autologous chondrocyte implantation with matrix-induced bone marrow aspirate concentrate, osteochondral autologous transplantation alone with osteochondral autologous transplantation + bone marrow aspirate concentrate and autologous matrix-induced chondrogenesis plus peripheral blood concentrate vs. matrix-associated stem cell transplantation bone marrow aspirate concentrate.
Conclusion
There is insufficient evidence to support a positive effect on clinical outcomes of bone marrow aspirate concentrate as an additive to surgical treatment of osteochondral lesions of the talus. However, based on the safety reports and initial results, sufficiently powered, patient- and researcher-blinded, prospective randomised controlled trials are justified and recommended. Until then, we advise not to implement a therapy (addition of bone marrow aspirate concentrate) without clinical evidence that justifies the additional costs involved.
Level of evidence
Level III.
This is a preview of subscription content, access via your institution.



Data availability
Not available.
Abbreviations
- ACI:
-
Autologous chondrocyte implantation
- AMIC:
-
Autologous matrix-induced chondrogenesis
- AOFAS:
-
American Orthopaedic Foot and Ankle Society
- BMAC:
-
Bone marrow aspirate concentrate
- BMI:
-
Body mass index
- BMP:
-
Bone morphogenetic protein
- BMS:
-
Bone marrow stimulation
- CI:
-
Confidence interval
- CT:
-
Computer tomography
- FAOS:
-
Foot ankle outcome score
- ICRS:
-
International cartilage repair society
- JACI:
-
Juvenile allogenic chondrocyte implantation
- MAST:
-
Matrix-associated stem cell transplantation
- mACI:
-
Matrix-induced autologous chondrocyte implantation
- mBMAC:
-
Matrix-induced bone marrow aspirate concentrate
- MINORS:
-
Methodological index for non-randomised studies
- MOCART:
-
Magnetic resonance observation of cartilage repair tissue
- MRI:
-
Magnetic resonance imaging
- MSC:
-
Mesenchymal stem cell
- n.r.:
-
Not reported
- OAT:
-
Osteochondral autologous transplantation
- OCL:
-
Osteochondral lesion
- OLT:
-
Osteochondral lesion of the talus
- PBC:
-
Peripheral blood concentrate
- PDGF:
-
Platelet-derived growth factor
- PRF:
-
Platelet-rich fibrin
- PRISMA:
-
Preferred reporting items for systematic reviews and meta-analysis
- PROM:
-
Patient-reported outcome measure
- PROSPERO:
-
International prospective register of systematic reviews
- SD:
-
Standard deviation
- SF-12:
-
Short form survey 12
- TGF-ß:
-
Transforming growth factor-beta
- VAS:
-
Visual analogue scale
References
Bachir RM, Zaia IM, Santos GS, Fonseca LFD, Boni G, Guercia RF et al (2023) Bone marrow aspirate concentrate improves outcomes in adults with osteochondral dissecans of the talus and achilles rupture. Arthroscopy 39:881–886
Benthien JP, Behrens P (2010) Autologous matrix-induced chondrogenesis (AMIC): Combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage 1:65–68
Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369
Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L et al (2015) Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 39:893–900
Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA (2018) Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc 26:333–342
Cavinatto L, Hinckel BB, Tomlinson RE, Gupta S, Farr J, Bartolozzi AR (2019) The role of bone marrow aspirate concentrate for the treatment of focal chondral lesions of the knee: a systematic review and critical analysis of animal and clinical studies. Arthroscopy 35:1860–1877
Chahla J, Cinque ME, Shon JM, Liechti DJ, Matheny LM, LaPrade RF et al (2016) Bone marrow aspirate concentrate for the treatment of osteochondral lesions of the talus: a systematic review of outcomes. J Exp Orthop 3:33. https://doi.org/10.1186/s40634-016-0069-x
Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF (2016) Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med 4:2325967115625481
Delco ML, Kennedy JG, Bonassar LJ, Fortier LA (2017) Post-traumatic osteoarthritis of the ankle: a distinct clinical entity requiring new research approaches. J Orthop Res 35:440–453
Desando G, Bartolotti I, Vannini F, Cavallo C, Castagnini F, Buda R et al (2017) Repair potential of matrix-induced bone marrow aspirate concentrate and matrix-induced autologous chondrocyte implantation for talar osteochondral repair: patterns of some catabolic, inflammatory, and pain mediators. Cartilage 8:50–60
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317
Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ (2011) The role of growth factors in cartilage repair. Clin Orthop Relat Res 469:2706–2715
Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C et al (2010) Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury 41:1196–1203
Guyton GP (2001) Theoretical limitations of the AOFAS scoring systems: an analysis using Monte Carlo modeling. Foot Ankle Int 22:779–787
Hangody L, Kish G, Módis L, Szerb I, Gáspár L, Diószegi Z et al (2001) Mosaicplasty for the treatment of osteochondritis dissecans of the talus: two to seven year results in 36 patients. Foot Ankle Int 22:552–558
Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV et al (2016) Arthroscopic Bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy 32:339–347
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019) Chapter 6: Choosing effect measures and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Cochrane handbook for systematic reviews of interventions, 2nd edn. Wiley, Chichester
Hollander JJ, Dahmen J, Emanuel KS, Stufkens SAS, Kennedy JG, Kerkhoffs G (2023) The frequency and severity of complications in surgical treatment of osteochondral lesions of the talus: a systematic review and meta-analysis of 6,962 lesions. Cartilage 14:180–197
Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13
Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T et al (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320:914–919
Kumai T, Takakura Y, Higashiyama I, Tamai S (1999) Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 81:1229–1235
Lambers KTA, Dahmen J, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs G (2020) Arthroscopic lift, drill, fill and fix (LDFF) is an effective treatment option for primary talar osteochondral defects. Knee Surg Sports Traumatol Arthrosc 28:141–147
Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ (2002) Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 30:879–886
Murawski CD, Jamal MS, Hurley ET, Buda R, Hunt K, McCollum G et al (2022) Terminology for osteochondral lesions of the ankle: proceedings of the international consensus meeting on cartilage repair of the ankle. J ISAKOS 7:62–66
Murphy EP, McGoldrick NP, Curtin M, Kearns SR (2019) A prospective evaluation of bone marrow aspirate concentrate and microfracture in the treatment of osteochondral lesions of the talus. Foot Ankle Surg 25:441–448
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210. https://doi.org/10.1186/s13643-016-0384-4
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/bmj.n71
Pereira GF, Steele JR, Fletcher AN, Clement RD, Arasa MA, Adams SB (2021) Fresh osteochondral allograft transplantation for osteochondral lesions of the talus: a systematic review. J Foot Ankle Surg 60:585–591
Richter M, Zech S, Meissner S, Naef I (2020) Comparison matrix-associated stem cell transplantation (MAST) with autologous matrix induced chondrogenesis plus peripheral blood concentrate (AMIC+PBC) in chondral lesions at the ankle-a clinical matched-patient analysis. Foot Ankle Surg 26:669–675
Sampson S, Botto-van Bemden A, Aufiero D (2013) Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys Sportsmed 41:7–18
Shimozono Y, Yasui Y, Hurley ET, Paugh RA, Deyer TW, Kennedy JG (2019) Concentrated bone marrow aspirate may decrease postoperative cyst occurrence rate in autologous osteochondral transplantation for osteochondral lesions of the talus. Arthroscopy 35:99–105
Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716
Smyth NA, Murawski CD, Haleem AM, Hannon CP, Savage-Elliott I, Kennedy JG (2012) Establishing proof of concept: platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus. World J Orthop 3:101–108
Tahta M, Akkaya M, Gursoy S, Isik C, Bozkurt M (2017) Arthroscopic treatment of osteochondral lesions of the talus: Nanofracture versus hyaluronic acid-based cell-free scaffold with concentration of autologous bone marrow aspirate. J Orthop Surg (Hong Kong) 25:2309499017717870
Verhagen RA, Struijs PA, Bossuyt PM, van Dijk CN (2003) Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 8:233–242
Zengerink M, Szerb I, Hangody L, Dopirak RM, Ferkel RD, van Dijk CN (2006) Current concepts: treatment of osteochondral ankle defects. Foot Ankle Clin 11:331–359
Acknowledgements
The authors would like to thank AMC’s clinical librarian, F. Jamaludin for her contribution to the present systematic review.
Funding
No funding was received for this study.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Ethical approval
Not applicable (systematic review and meta-analysis).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1
21–6-2022:
Databases: | Â | Â |
---|---|---|
PubMed, Embase (Ovid), Cochrane Library | Before deduplication | After deduplication |
Total | 971 | 633 |
PUBMED
375 hits:
("Ankle"[Mesh] OR "Ankle Joint"[Mesh] OR "Ankle Injuries"[Mesh] OR "Talus"[Mesh] OR ankle*[tiab] OR talus[tiab] OR talar*[tiab])
AND
("Osteochondritis"[Mesh] OR "Osteochondritis Dissecans"[Mesh] OR "Cartilage, Articular"[Mesh] OR osteochondritis dissecans[tiab] OR osteochondrosis dissecans[tiab] OR osteochondrolysis[tiab] OR osteochondriti*[tiab] OR osteochondral[tiab] OR chondral[tiab] OR transchondral[tiab] OR cartilage*[tiab] OR OCD[tiab] OR OLT[tiab] OR OCL[tiab])
AND
("Bone Marrow"[Mesh] OR "Bone Marrow Transplantation"[Mesh] OR "Bone Marrow Cells"[Mesh] OR bone marrow[tiab] OR BMAC[tiab] OR BMA[tiab] OR BMC[tiab] OR aspirat*[tiab] OR concentrat*[tiab])
EMBASE (OVID):
Database(s): Embase Classic + Embase 1947 to 2022 June 20
Search Strategy:
# | Searches | Results |
---|---|---|
1 | exp ankle/ or talus/ or ankle injury/ | 53,992 |
2 | (ankle* or talus or talar*).ti,ab,kf | 102,927 |
3 | 1 or 2 | 111,150 |
4 | osteochondritis/ or osteochondritis dissecans/ or articular cartilage/ | 41,385 |
5 | (osteochondritis dissecans or osteochondrosis dissecans or osteochondrolysis or osteochondriti* or osteochondral or chondral or transchondral or cartilage* or OCD or OLT or OCL).ti,ab,kf | 166,699 |
6 | 4 or 5 | 175,272 |
7 | exp bone marrow/ or exp bone marrow transplantation/ | 344,567 |
8 | (bone marrow or BMAC or BMA or BMC or aspirat* or concentrat*).ti,ab,kf | 3,295,583 |
9 | 7 or 8 | 3,408,032 |
10 | 3 and 6 and 9 | 575 |
Cochrane Library:
Cochrane Database of Systematic Reviews
Issue 6 of 12, June 2022
0 hits
Cochrane Central Register of Controlled Trials
Issue 5 of 12, May 2022
21 hits
IDSearchHits
#1(ankle* or talus or talar*):ti,ab,kw11215
#2(osteochondritis dissecans or osteochondrosis dissecans or osteochondrolysis or osteochondriti* or osteochondral or chondral or transchondral or cartilage* or OCD or OLT or OCL):ti,ab,kw6316
#3(bone marrow or BMAC or BMA or BMC or aspirat* or concentrat*):ti,ab,kw176136
#4#1 and #2 and #321
UPDATE 21–6-2022 t/m 13-3-2023
13–3-2023:
Databases: | Â | Â |
---|---|---|
PubMed, Embase (Ovid), Cochrane Library | Before deduplication | After deduplication |
Total | 85 | 35 |
PUBMED
375 hits:
("Ankle"[Mesh] OR "Ankle Joint"[Mesh] OR "Ankle Injuries"[Mesh] OR "Talus"[Mesh] OR ankle*[tiab] OR talus[tiab] OR talar*[tiab])
AND
("Osteochondritis"[Mesh] OR "Osteochondritis Dissecans"[Mesh] OR "Cartilage, Articular"[Mesh] OR osteochondritis dissecans[tiab] OR osteochondrosis dissecans[tiab] OR osteochondrolysis[tiab] OR osteochondriti*[tiab] OR osteochondral[tiab] OR chondral[tiab] OR transchondral[tiab] OR cartilage*[tiab] OR OCD[tiab] OR OLT[tiab] OR OCL[tiab])
AND
("Bone Marrow"[Mesh] OR "Bone Marrow Transplantation"[Mesh] OR "Bone Marrow Cells"[Mesh] OR bone marrow[tiab] OR BMAC[tiab] OR BMA[tiab] OR BMC[tiab] OR aspirat*[tiab] OR concentrat*[tiab])
AND ("2022/06/21"[Date—Publication]: "2023/03/13"[Date—Publication])
EMBASE (OVID):
Database(s): Embase Classic + Embase 1947 to 2023 March 10
Search Strategy:
# | Searches | Results |
---|---|---|
1 | exp ankle/ or talus/ or ankle injury/ | 58,008 |
2 | (ankle* or talus or talar*).ti,ab,kf | 109,084 |
3 | 1 or 2 | 118,341 |
4 | osteochondritis/ or osteochondritis dissecans/ or articular cartilage/ | 43,039 |
5 | (osteochondritis dissecans or osteochondrosis dissecans or osteochondrolysis or osteochondriti* or osteochondral or chondral or transchondral or cartilage* or OCD or OLT or OCL).ti,ab,kf | 175,085 |
6 | 4 or 5 | 183,887 |
7 | exp bone marrow/ or exp bone marrow transplantation/ | 358,192 |
8 | (bone marrow or BMAC or BMA or BMC or aspirat* or concentrat*).ti,ab,kf | 3,438,133 |
9 | 7 or 8 | 3,554,438 |
10 | 3 and 6 and 9 | 616 |
11 | limit 10 to yr = "2022 -Current" | 54 |
Cochrane Library:
Cochrane Central Register of Controlled Trials
Issue 2 of 12, February 2023
4 results
Cochrane Database of Systematic Reviews
Issue 3 of 12, March 2023
0 results
IDSearchHits
#1(ankle* or talus or talar*):ti,ab,kw12405
#2(osteochondritis dissecans or osteochondrosis dissecans or osteochondrolysis or osteochondriti* or osteochondral or chondral or transchondral or cartilage* or OCD or OLT or OCL):ti,ab,kw6856
#3(bone marrow or BMAC or BMA or BMC or aspirat* or concentrat*):ti,ab,kw184484
#4#1 and #2 and #3 with Cochrane Library publication date Between Jun 2022 and Mar 20,234
Appendix 2
All Extracted patient demographics in the control group | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | Intervention | N | Female | age | Previous trauma | Previous surgery | Symptoms (months) | Lesion area (mm2) | Lesion depth (mm) | Follow-up (months) | BMI | Medial location | Lateral location |
Buda et al. (2015) | mACI | 40 | 15 (37.5%) | 31.4 ± 7.6 | 30 (75%) | 15 (37.5%) | n.r. | 170 ± 60 | 4.0 ± 0.9 | 48.0 | n.r. | 33 (82.5%) | 7 (17.5%) |
Desando et al. (2017) | mACI | 7 | 3 (42.9%) | 31.2 ± 8 | n.r | n.r. | n.r. | 180 ± 70 | n.r | 36.0 | n.r. | n.r. | n.r. |
Giannini et al. (2010) | mACI | 46 | Combined 34 (42.0%) | 31.4 ± 7.6 | 100% | n.r. | n.r. | 160 ± 60 | Combined 4.0 ± 0.9 | 57.5 ± 14.5 | n.r. | 35 (76.1%) | 7 (15.2%) |
Hannon et al. (2015) | BMS | 12 | 5 (41.7%) | 39 ± 10.5 | 8(66.7%) | n.r. | 14.4(2–60) | 111.2 ± 25.9 | n.r. | 77.3 ± 13.5 | n.r. | 7 (58.3%) | 5 (41.7%) |
Murphy et al. (2019) | BMS | 52 | 11 (21.2%) | 39.7 ± 9.5 | n.r | n.r. | n.r. | n.r. | n.r. | 58.0 | n.r. | 47.0% | 53.0% |
Richter et al. (2019) | AMIC + PBC | 129 | 52 (40%) | 35.6 ± 13.8 | 62(48%) | n.r. | n.r. | n.r. | n.r. | 23.8 ± 0.8 | n.r. | n.r. | n.r. |
Shimozono et al. (2018) | OAT | 26 | 9 (34.6%) | 33.6 ± 12.3 | n.r. | n.r. | 28.8 ± 17.9 | 102.5 ± 42.0 | n.r | 92.8 ± 13.8 | n.r. | 16 (61.5%) | 10 (38.5%) |
Tahta et al. (2017) | BMS | 52 | n.r | 30.4 ± 7.6 | n.r. | n.r. | n.r. | 210 ± 40 | 6 ± 3 | 40.1 ± 3.2 | 25.3 ± 3.6 | n.r. | n.r. |
All Extracted patient demographics in the intervention group | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | Intervention | N | Female | Age | Previous trauma | Previous surgery | Symptoms (months) | Lesion area (mm2) | Lesion depth (mm) | Follow-up (months) | BMI | Medial location | Lateral location |
Buda et al. (2015) | mBMAC | 40 | 13 (32.5%) | 30.2 ± 9.7 | 31 (77.5%) | 17 (42.5%) | n.r. | 180 ± 60 | 4.2 ± 0.9 | 48.0 | n.r. | 30 (75%) | 10 (25%) |
Desando et al. (2017) | mBMAC | 15 | 5 (33.3%) | 31 ± 7.8 | n.r. | n.r. | n.r. | 180 ± 70 | n.r. | 36.0 | n.r. | n.r. | n.r. |
Giannini et al. (2010) | mBMAC | 25 | Combined 34 (42%) | 28.2 ± 9.4 | 100% | n.r. | n.r. | 218 ± 50 | Combined 4.0 ± 0.9 | 39.2 ± 1.9 | n.r. | n.r. | n.r. |
Hannon et al. (2015) | BMS + BMAC | 22 | 9 (40.9%) | 35 ± 14 | 17 (77.3%) | n.r. | 14.7 (1–60) | 103.0 ± 42.4 | n.r. | 48.3 ± 12.0 | n.r. | 12 (54.5%) | 10 (45.5%) |
Murphy et al. (2019) | BMS + BMAC | 49 | 10 (22.4%) | 34.6 ± 11.5 | n.r. | n.r. | n.r. | n.r. | n.r. | 40.0 | n.r. | 55.0% | 45.0% |
Richter et al. (2019) | BMAC | 129 | 53 (41%) | 35.3 ± 12.8 | 64 (50%) | n.r. | n.r. | n.r. | n.r. | 24.4 ± 1.0 | n.r. | n.r. | n.r. |
Shimozono et al. (2018) | OAT + BMAC | 28 | 7 (25%) | 36.0 ± 15.3 | n.r. | n.r. | 23.0 ± 13.3 | 108.5 ± 43.3 | n.r. | 84.2 ± 10.5 | n.r. | 22 (78.6%) | 6 (21.4%) |
Tahta et al. (2017) | BMS + BMAC | 46 | n.r | 28.8 ± 6.2 | n.r. | n.r. | n.r. | 190 ± 30 | 8 ± 2 | 42.2 ± 2.2 | 24.2 ± 4.3 | n.r. | n.r. |
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Klein, C., Dahmen, J., Emanuel, K.S. et al. Limited evidence in support of bone marrow aspirate concentrate as an additive to the bone marrow stimulation for osteochondral lesions of the talus: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc (2023). https://doi.org/10.1007/s00167-023-07651-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00167-023-07651-1