Skip to main content

Limited evidence in support of bone marrow aspirate concentrate as an additive to the bone marrow stimulation for osteochondral lesions of the talus: a systematic review and meta-analysis

Abstract

Purpose

Bone marrow aspirate concentrate can be used as an additive to surgical treatment of osteochondral lesions of the talus. This systematic literature review aims to study the effect of the additional use of bone marrow aspirate concentrate on top of a surgical treatment for osteochondral lesions of the talus on clinical outcomes compared to surgical treatment alone.

Methods

An online literature search was conducted using PubMed (Medline), Embase (Ovid), and the Cochrane library for all studies comparing a surgical intervention with bone marrow aspirate concentrate, with a surgical intervention without bone marrow aspirate concentrate. The methodological quality was rated according to the methodological index for non-randomised studies checklist. The primary outcome measure were clinical outcomes. Secondary outcome measures consisted of revision rate, complication rate, radiographic outcome measures and histological analyses. Subgroups were created based on type of surgical intervention used in the studies. If multiple articles were included in a subgroup, a linear random-effects model was used to compare the bone marrow aspirate concentrate-augmented group with the control group.

Results

Out of 1006 studies found, eight studies with a total of 718 patients were included. The methodological quality, assessed according to the methodological index for non-randomised studies checklist, was weak. A significantly better functional outcome measures (p < 0.05) was found in the subgroup treated with bone marrow stimulation + bone marrow aspirate concentrate compared to the group treated with bone marrow stimulation alone, based on three non-blinded studies. No significant differences regarding clinical outcomes were found in the subgroups comparing matrix-induced autologous chondrocyte implantation with matrix-induced bone marrow aspirate concentrate, osteochondral autologous transplantation alone with osteochondral autologous transplantation + bone marrow aspirate concentrate and autologous matrix-induced chondrogenesis plus peripheral blood concentrate vs. matrix-associated stem cell transplantation bone marrow aspirate concentrate.

Conclusion

There is insufficient evidence to support a positive effect on clinical outcomes of bone marrow aspirate concentrate as an additive to surgical treatment of osteochondral lesions of the talus. However, based on the safety reports and initial results, sufficiently powered, patient- and researcher-blinded, prospective randomised controlled trials are justified and recommended. Until then, we advise not to implement a therapy (addition of bone marrow aspirate concentrate) without clinical evidence that justifies the additional costs involved.

Level of evidence

Level III.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Not available.

Abbreviations

ACI:

Autologous chondrocyte implantation

AMIC:

Autologous matrix-induced chondrogenesis

AOFAS:

American Orthopaedic Foot and Ankle Society

BMAC:

Bone marrow aspirate concentrate

BMI:

Body mass index

BMP:

Bone morphogenetic protein

BMS:

Bone marrow stimulation

CI:

Confidence interval

CT:

Computer tomography

FAOS:

Foot ankle outcome score

ICRS:

International cartilage repair society

JACI:

Juvenile allogenic chondrocyte implantation

MAST:

Matrix-associated stem cell transplantation

mACI:

Matrix-induced autologous chondrocyte implantation

mBMAC:

Matrix-induced bone marrow aspirate concentrate

MINORS:

Methodological index for non-randomised studies

MOCART:

Magnetic resonance observation of cartilage repair tissue

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stem cell

n.r.:

Not reported

OAT:

Osteochondral autologous transplantation

OCL:

Osteochondral lesion

OLT:

Osteochondral lesion of the talus

PBC:

Peripheral blood concentrate

PDGF:

Platelet-derived growth factor

PRF:

Platelet-rich fibrin

PRISMA:

Preferred reporting items for systematic reviews and meta-analysis

PROM:

Patient-reported outcome measure

PROSPERO:

International prospective register of systematic reviews

SD:

Standard deviation

SF-12:

Short form survey 12

TGF-ß:

Transforming growth factor-beta

VAS:

Visual analogue scale

References

  1. Bachir RM, Zaia IM, Santos GS, Fonseca LFD, Boni G, Guercia RF et al (2023) Bone marrow aspirate concentrate improves outcomes in adults with osteochondral dissecans of the talus and achilles rupture. Arthroscopy 39:881–886

    Article  PubMed  Google Scholar 

  2. Benthien JP, Behrens P (2010) Autologous matrix-induced chondrogenesis (AMIC): Combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage 1:65–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369

    Article  CAS  PubMed  Google Scholar 

  4. Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L et al (2015) Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 39:893–900

    Article  PubMed  Google Scholar 

  5. Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA (2018) Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc 26:333–342

    Article  PubMed  Google Scholar 

  6. Cavinatto L, Hinckel BB, Tomlinson RE, Gupta S, Farr J, Bartolozzi AR (2019) The role of bone marrow aspirate concentrate for the treatment of focal chondral lesions of the knee: a systematic review and critical analysis of animal and clinical studies. Arthroscopy 35:1860–1877

    Article  PubMed  Google Scholar 

  7. Chahla J, Cinque ME, Shon JM, Liechti DJ, Matheny LM, LaPrade RF et al (2016) Bone marrow aspirate concentrate for the treatment of osteochondral lesions of the talus: a systematic review of outcomes. J Exp Orthop 3:33. https://doi.org/10.1186/s40634-016-0069-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF (2016) Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med 4:2325967115625481

    PubMed  PubMed Central  Google Scholar 

  9. Delco ML, Kennedy JG, Bonassar LJ, Fortier LA (2017) Post-traumatic osteoarthritis of the ankle: a distinct clinical entity requiring new research approaches. J Orthop Res 35:440–453

    Article  PubMed  Google Scholar 

  10. Desando G, Bartolotti I, Vannini F, Cavallo C, Castagnini F, Buda R et al (2017) Repair potential of matrix-induced bone marrow aspirate concentrate and matrix-induced autologous chondrocyte implantation for talar osteochondral repair: patterns of some catabolic, inflammatory, and pain mediators. Cartilage 8:50–60

    Article  PubMed  Google Scholar 

  11. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  12. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ (2011) The role of growth factors in cartilage repair. Clin Orthop Relat Res 469:2706–2715

    Article  PubMed  PubMed Central  Google Scholar 

  13. Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C et al (2010) Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury 41:1196–1203

    Article  PubMed  Google Scholar 

  14. Guyton GP (2001) Theoretical limitations of the AOFAS scoring systems: an analysis using Monte Carlo modeling. Foot Ankle Int 22:779–787

    Article  CAS  PubMed  Google Scholar 

  15. Hangody L, Kish G, Módis L, Szerb I, Gáspár L, Diószegi Z et al (2001) Mosaicplasty for the treatment of osteochondritis dissecans of the talus: two to seven year results in 36 patients. Foot Ankle Int 22:552–558

    Article  CAS  PubMed  Google Scholar 

  16. Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV et al (2016) Arthroscopic Bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy 32:339–347

    Article  PubMed  Google Scholar 

  17. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019) Chapter 6: Choosing effect measures and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Cochrane handbook for systematic reviews of interventions, 2nd edn. Wiley, Chichester

    Chapter  Google Scholar 

  18. Hollander JJ, Dahmen J, Emanuel KS, Stufkens SAS, Kennedy JG, Kerkhoffs G (2023) The frequency and severity of complications in surgical treatment of osteochondral lesions of the talus: a systematic review and meta-analysis of 6,962 lesions. Cartilage 14:180–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  20. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T et al (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320:914–919

    Article  CAS  PubMed  Google Scholar 

  21. Kumai T, Takakura Y, Higashiyama I, Tamai S (1999) Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 81:1229–1235

    Article  CAS  PubMed  Google Scholar 

  22. Lambers KTA, Dahmen J, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs G (2020) Arthroscopic lift, drill, fill and fix (LDFF) is an effective treatment option for primary talar osteochondral defects. Knee Surg Sports Traumatol Arthrosc 28:141–147

    Article  PubMed  Google Scholar 

  23. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ (2002) Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 30:879–886

    Article  CAS  PubMed  Google Scholar 

  24. Murawski CD, Jamal MS, Hurley ET, Buda R, Hunt K, McCollum G et al (2022) Terminology for osteochondral lesions of the ankle: proceedings of the international consensus meeting on cartilage repair of the ankle. J ISAKOS 7:62–66

    Article  PubMed  Google Scholar 

  25. Murphy EP, McGoldrick NP, Curtin M, Kearns SR (2019) A prospective evaluation of bone marrow aspirate concentrate and microfracture in the treatment of osteochondral lesions of the talus. Foot Ankle Surg 25:441–448

    Article  PubMed  Google Scholar 

  26. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210. https://doi.org/10.1186/s13643-016-0384-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pereira GF, Steele JR, Fletcher AN, Clement RD, Arasa MA, Adams SB (2021) Fresh osteochondral allograft transplantation for osteochondral lesions of the talus: a systematic review. J Foot Ankle Surg 60:585–591

    Article  PubMed  Google Scholar 

  29. Richter M, Zech S, Meissner S, Naef I (2020) Comparison matrix-associated stem cell transplantation (MAST) with autologous matrix induced chondrogenesis plus peripheral blood concentrate (AMIC+PBC) in chondral lesions at the ankle-a clinical matched-patient analysis. Foot Ankle Surg 26:669–675

    Article  PubMed  Google Scholar 

  30. Sampson S, Botto-van Bemden A, Aufiero D (2013) Autologous bone marrow concentrate: review and application of a novel intra-articular orthobiologic for cartilage disease. Phys Sportsmed 41:7–18

    Article  PubMed  Google Scholar 

  31. Shimozono Y, Yasui Y, Hurley ET, Paugh RA, Deyer TW, Kennedy JG (2019) Concentrated bone marrow aspirate may decrease postoperative cyst occurrence rate in autologous osteochondral transplantation for osteochondral lesions of the talus. Arthroscopy 35:99–105

    Article  PubMed  Google Scholar 

  32. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716

    Article  PubMed  Google Scholar 

  33. Smyth NA, Murawski CD, Haleem AM, Hannon CP, Savage-Elliott I, Kennedy JG (2012) Establishing proof of concept: platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus. World J Orthop 3:101–108

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tahta M, Akkaya M, Gursoy S, Isik C, Bozkurt M (2017) Arthroscopic treatment of osteochondral lesions of the talus: Nanofracture versus hyaluronic acid-based cell-free scaffold with concentration of autologous bone marrow aspirate. J Orthop Surg (Hong Kong) 25:2309499017717870

    Article  PubMed  Google Scholar 

  35. Verhagen RA, Struijs PA, Bossuyt PM, van Dijk CN (2003) Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 8:233–242

    Article  PubMed  Google Scholar 

  36. Zengerink M, Szerb I, Hangody L, Dopirak RM, Ferkel RD, van Dijk CN (2006) Current concepts: treatment of osteochondral ankle defects. Foot Ankle Clin 11:331–359

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank AMC’s clinical librarian, F. Jamaludin for her contribution to the present systematic review.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino M. M. J. Kerkhoffs.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable (systematic review and meta-analysis).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

21–6-2022:

Databases:

  

PubMed, Embase (Ovid), Cochrane Library

Before deduplication

After deduplication

Total

971

633

PUBMED

375 hits:

("Ankle"[Mesh] OR "Ankle Joint"[Mesh] OR "Ankle Injuries"[Mesh] OR "Talus"[Mesh] OR ankle*[tiab] OR talus[tiab] OR talar*[tiab])

AND

("Osteochondritis"[Mesh] OR "Osteochondritis Dissecans"[Mesh] OR "Cartilage, Articular"[Mesh] OR osteochondritis dissecans[tiab] OR osteochondrosis dissecans[tiab] OR osteochondrolysis[tiab] OR osteochondriti*[tiab] OR osteochondral[tiab] OR chondral[tiab] OR transchondral[tiab] OR cartilage*[tiab] OR OCD[tiab] OR OLT[tiab] OR OCL[tiab])

AND

("Bone Marrow"[Mesh] OR "Bone Marrow Transplantation"[Mesh] OR "Bone Marrow Cells"[Mesh] OR bone marrow[tiab] OR BMAC[tiab] OR BMA[tiab] OR BMC[tiab] OR aspirat*[tiab] OR concentrat*[tiab])

EMBASE (OVID):

Database(s): Embase Classic + Embase 1947 to 2022 June 20

Search Strategy:

#

Searches

Results

1

exp ankle/ or talus/ or ankle injury/

53,992

2

(ankle* or talus or talar*).ti,ab,kf

102,927

3

1 or 2

111,150

4

osteochondritis/ or osteochondritis dissecans/ or articular cartilage/

41,385

5

(osteochondritis dissecans or osteochondrosis dissecans or osteochondrolysis or osteochondriti* or osteochondral or chondral or transchondral or cartilage* or OCD or OLT or OCL).ti,ab,kf

166,699

6

4 or 5

175,272

7

exp bone marrow/ or exp bone marrow transplantation/

344,567

8

(bone marrow or BMAC or BMA or BMC or aspirat* or concentrat*).ti,ab,kf

3,295,583

9

7 or 8

3,408,032

10

3 and 6 and 9

575

Cochrane Library:

Cochrane Database of Systematic Reviews

Issue 6 of 12, June 2022

0 hits

Cochrane Central Register of Controlled Trials

Issue 5 of 12, May 2022

21 hits

IDSearchHits

#1(ankle* or talus or talar*):ti,ab,kw11215

#2(osteochondritis dissecans or osteochondrosis dissecans or osteochondrolysis or osteochondriti* or osteochondral or chondral or transchondral or cartilage* or OCD or OLT or OCL):ti,ab,kw6316

#3(bone marrow or BMAC or BMA or BMC or aspirat* or concentrat*):ti,ab,kw176136

#4#1 and #2 and #321

UPDATE 21–6-2022 t/m 13-3-2023

13–3-2023:

Databases:

  

PubMed, Embase (Ovid), Cochrane Library

Before deduplication

After deduplication

Total

85

35

PUBMED

375 hits:

("Ankle"[Mesh] OR "Ankle Joint"[Mesh] OR "Ankle Injuries"[Mesh] OR "Talus"[Mesh] OR ankle*[tiab] OR talus[tiab] OR talar*[tiab])

AND

("Osteochondritis"[Mesh] OR "Osteochondritis Dissecans"[Mesh] OR "Cartilage, Articular"[Mesh] OR osteochondritis dissecans[tiab] OR osteochondrosis dissecans[tiab] OR osteochondrolysis[tiab] OR osteochondriti*[tiab] OR osteochondral[tiab] OR chondral[tiab] OR transchondral[tiab] OR cartilage*[tiab] OR OCD[tiab] OR OLT[tiab] OR OCL[tiab])

AND

("Bone Marrow"[Mesh] OR "Bone Marrow Transplantation"[Mesh] OR "Bone Marrow Cells"[Mesh] OR bone marrow[tiab] OR BMAC[tiab] OR BMA[tiab] OR BMC[tiab] OR aspirat*[tiab] OR concentrat*[tiab])

AND ("2022/06/21"[Date—Publication]: "2023/03/13"[Date—Publication])

EMBASE (OVID):

Database(s): Embase Classic + Embase 1947 to 2023 March 10

Search Strategy:

#

Searches

Results

1

exp ankle/ or talus/ or ankle injury/

58,008

2

(ankle* or talus or talar*).ti,ab,kf

109,084

3

1 or 2

118,341

4

osteochondritis/ or osteochondritis dissecans/ or articular cartilage/

43,039

5

(osteochondritis dissecans or osteochondrosis dissecans or osteochondrolysis or osteochondriti* or osteochondral or chondral or transchondral or cartilage* or OCD or OLT or OCL).ti,ab,kf

175,085

6

4 or 5

183,887

7

exp bone marrow/ or exp bone marrow transplantation/

358,192

8

(bone marrow or BMAC or BMA or BMC or aspirat* or concentrat*).ti,ab,kf

3,438,133

9

7 or 8

3,554,438

10

3 and 6 and 9

616

11

limit 10 to yr = "2022 -Current"

54

Cochrane Library:

Cochrane Central Register of Controlled Trials

Issue 2 of 12, February 2023

4 results

Cochrane Database of Systematic Reviews

Issue 3 of 12, March 2023

0 results

IDSearchHits

#1(ankle* or talus or talar*):ti,ab,kw12405

#2(osteochondritis dissecans or osteochondrosis dissecans or osteochondrolysis or osteochondriti* or osteochondral or chondral or transchondral or cartilage* or OCD or OLT or OCL):ti,ab,kw6856

#3(bone marrow or BMAC or BMA or BMC or aspirat* or concentrat*):ti,ab,kw184484

#4#1 and #2 and #3 with Cochrane Library publication date Between Jun 2022 and Mar 20,234

Appendix 2

All Extracted patient demographics in the control group

Author

Intervention

N

Female

age

Previous trauma

Previous surgery

Symptoms (months)

Lesion area (mm2)

Lesion depth (mm)

Follow-up (months)

BMI

Medial location

Lateral location

Buda et al. (2015)

mACI

40

15 (37.5%)

31.4 ± 7.6

30 (75%)

15 (37.5%)

n.r.

170 ± 60

4.0 ± 0.9

48.0

n.r.

33 (82.5%)

7 (17.5%)

Desando et al. (2017)

mACI

7

3 (42.9%)

31.2 ± 8

n.r

n.r.

n.r.

180 ± 70

n.r

36.0

n.r.

n.r.

n.r.

Giannini et al. (2010)

mACI

46

Combined

34 (42.0%)

31.4 ± 7.6

100%

n.r.

n.r.

160 ± 60

Combined

4.0 ± 0.9

57.5 ± 14.5

n.r.

35 (76.1%)

7 (15.2%)

Hannon et al. (2015)

BMS

12

5 (41.7%)

39 ± 10.5

8(66.7%)

n.r.

14.4(2–60)

111.2 ± 25.9

n.r.

77.3 ± 13.5

n.r.

7 (58.3%)

5 (41.7%)

Murphy et al. (2019)

BMS

52

11 (21.2%)

39.7 ± 9.5

n.r

n.r.

n.r.

n.r.

n.r.

58.0

n.r.

47.0%

53.0%

Richter et al. (2019)

AMIC + PBC

129

52 (40%)

35.6 ± 13.8

62(48%)

n.r.

n.r.

n.r.

n.r.

23.8 ± 0.8

n.r.

n.r.

n.r.

Shimozono et al. (2018)

OAT

26

9 (34.6%)

33.6 ± 12.3

n.r.

n.r.

28.8 ± 17.9

102.5 ± 42.0

n.r

92.8 ± 13.8

n.r.

16 (61.5%)

10 (38.5%)

Tahta et al. (2017)

BMS

52

n.r

30.4 ± 7.6

n.r.

n.r.

n.r.

210 ± 40

6 ± 3

40.1 ± 3.2

25.3 ± 3.6

n.r.

n.r.

  1. n number, mm2 squared millimetre, mm millimetre, BMI body mass index, n.r. not reported, mACI matrix-induced autologous chondrocyte implantation, BMS bone marrow stimulation, AMIC autologous matrix-induced chondrogenesis, PBC peripheral blood concentrate, OAT osteochondral autologous implantation

All Extracted patient demographics in the intervention group

Author

Intervention

N

Female

Age

Previous trauma

Previous surgery

Symptoms (months)

Lesion area (mm2)

Lesion depth (mm)

Follow-up (months)

BMI

Medial location

Lateral location

Buda et al. (2015)

mBMAC

40

13 (32.5%)

30.2 ± 9.7

31 (77.5%)

17 (42.5%)

n.r.

180 ± 60

4.2 ± 0.9

48.0

n.r.

30 (75%)

10 (25%)

Desando et al. (2017)

mBMAC

15

5 (33.3%)

31 ± 7.8

n.r.

n.r.

n.r.

180 ± 70

n.r.

36.0

n.r.

n.r.

n.r.

Giannini et al. (2010)

mBMAC

25

Combined

34 (42%)

28.2 ± 9.4

100%

n.r.

n.r.

218 ± 50

Combined

4.0 ± 0.9

39.2 ± 1.9

n.r.

n.r.

n.r.

Hannon et al. (2015)

BMS + BMAC

22

9 (40.9%)

35 ± 14

17 (77.3%)

n.r.

14.7 (1–60)

103.0 ± 42.4

n.r.

48.3 ± 12.0

n.r.

12 (54.5%)

10 (45.5%)

Murphy et al. (2019)

BMS + BMAC

49

10 (22.4%)

34.6 ± 11.5

n.r.

n.r.

n.r.

n.r.

n.r.

40.0

n.r.

55.0%

45.0%

Richter et al. (2019)

BMAC

129

53 (41%)

35.3 ± 12.8

64 (50%)

n.r.

n.r.

n.r.

n.r.

24.4 ± 1.0

n.r.

n.r.

n.r.

Shimozono et al. (2018)

OAT + BMAC

28

7 (25%)

36.0 ± 15.3

n.r.

n.r.

23.0 ± 13.3

108.5 ± 43.3

n.r.

84.2 ± 10.5

n.r.

22 (78.6%)

6 (21.4%)

Tahta et al. (2017)

BMS + BMAC

46

n.r

28.8 ± 6.2

n.r.

n.r.

n.r.

190 ± 30

8 ± 2

42.2 ± 2.2

24.2 ± 4.3

n.r.

n.r.

  1. n number, mm2 squared millimetre, mm millimetre, BMI body mass index, n.r. not reported, mBMAC matrix-induced bone marrow aspirate concentrate, BMS bone marrow stimulation, BMAC bone marrow aspirate concentrate, OAT osteochondral autologous transplantation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, C., Dahmen, J., Emanuel, K.S. et al. Limited evidence in support of bone marrow aspirate concentrate as an additive to the bone marrow stimulation for osteochondral lesions of the talus: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc (2023). https://doi.org/10.1007/s00167-023-07651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00167-023-07651-1

Keywords