Skip to main content

Advertisement

Log in

Graft impingement increases anterior cruciate ligament graft signal more than acute graft bending angle: magnetic resonance imaging-based study in outside-in anterior cruciate ligament reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

In this study, the relationship between patient-specific geometric factors and tunnel placement in graft impingement was identified by using magnetic resonance imaging (MRI) signal intensity of anterior cruciate ligament (ACL) grafts.

Methods

Ninety-two patients, who were treated between 2014 and 2020, were included retrospectively. These patients underwent primary remnant-preserving outside-in ACL reconstruction (ACLR) and were followed up with postoperative MRI at least one year after surgery. Plain radiographs and computed tomography (CT) were used to analyze tibial and femoral tunnel positions. Postoperative MRI was performed, at 32.8 ± 17.5 months after surgery, to evaluate the graft signal intensity, the ACL/posterior cruciate ligament (PCL) ratio (APR), ACL/muscle ratio (AMR), tunnel positions, and graft impingement. Clinical and stability outcomes were analyzed using the International Knee Documentation Committee (IKDC) subjective and objective scores, Lysholm scores, and side-to-side differences (SS-D).

Results

The mean APR and AMR of the proximal third of the grafts were significantly lower than those of the middle third of the grafts (p = 0.017 and p = 0.045, respectively). Multivariate regression analysis showed that there was a negative association between the mean APR and AMR of entire intra-articular ACL graft and the distance from the anterior end of the intercondylar roof to the center of the tibial tunnel in the sagittal plane (p < 0.001 and p < 0.001, respectively) and the notch width index (p < 0.001 and p = 0.002, respectively). No significant correlations were found between tunneling and geometric factors, and clinical scores or SS-D.

Conclusions

Graft impingement on the anterior tibial tunnel relative to the end of the intercondylar roof and narrow notch was a more significant contributing factor on increased signal intensities of the ACL graft, compared with the acute femoral bending angle in remnant-preserving outside-in ACLR. Therefore, surgeons should focus on intercondylar notch anatomy during tibial tunnel placement to avoid roof impingement.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Every data was transparency.

References

  1. Agneskirchner JD, Galla M, Landwehr P, Lobenhoffer HP (2004) Simplified MRI sequences for postoperative control of hamstring anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 124:215–220

    Article  CAS  PubMed  Google Scholar 

  2. Ahn JH, Jeong HJ, Lee YS, Park JH, Lee JH, Ko TS (2016) Graft bending angle is correlated with femoral intraosseous graft signal intensity in anterior cruciate ligament reconstruction using the outside-in technique. Knee 23:666–673

    Article  PubMed  Google Scholar 

  3. Barnum MS, Boyd ED, Vacek P, Slauterbeck JR, Beynnon BD (2021) Association of geometric characteristics of knee anatomy (alpha angle and intercondylar notch type) with noncontact ACL injury. Am J Sports Med 49:2624–2630

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bayer S, Meredith SJ, Wilson KW, Pauyo T, Byrne K, McDonough CM et al (2020) Knee morphological risk factors for anterior cruciate ligament injury: a systematic review. J Bone Joint Surg Am 102:703–718

    Article  PubMed  Google Scholar 

  5. Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D et al (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important? Am J Sports Med 39:366–373

    Article  PubMed  Google Scholar 

  6. Byrne KJ, Hughes JD, Gibbs C, Vaswani R, Meredith SJ, Popchak A et al (2022) Non-anatomic tunnel position increases the risk of revision anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 30:1388–1395

    Article  PubMed  Google Scholar 

  7. Chiba D, Yamamoto Y, Kimura Y, Sasaki S, Tsuda E, Ishibashi Y (2021) Combination of anterior tibial and femoral tunnels makes the signal intensity of antero-medial graft higher in double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 29:783–792

    Article  PubMed  Google Scholar 

  8. Eliya Y, Nawar K, Rothrauff BB, Lesniak BP, Musahl V (2020) Anatomical anterior cruciate ligament reconstruction (ACLR) results in fewer rates of atraumatic graft rupture, and higher rates of rotatory knee stability: a meta-analysis. J ISAKOS 5:359–370

    Article  Google Scholar 

  9. Everhart JS, Flanigan DC, Simon RA, Chaudhari AM (2010) Association of noncontact anterior cruciate ligament injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med 38:1667–1673

    Article  PubMed  Google Scholar 

  10. Ficek K, Rajca J, Cholewiński J, Racut A, Gwiazdoń P, Przednowek K et al (2021) Analysis of intercondylar notch size and shape in patients with cyclops syndrome after anterior cruciate ligament reconstruction. J Orthop Surg Res 16:1–10

    Article  Google Scholar 

  11. Howell S (1998) Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 6:S49–S55

    Article  PubMed  Google Scholar 

  12. Howell S, Berns G, Farley T (1991) Unimpinged and impinged anterior cruciate ligament grafts: MR signal intensity measurements. Radiology 179:639–643

    Article  CAS  PubMed  Google Scholar 

  13. Iriuchishima T, Goto B (2022) Lower anatomical femoral ACL tunnel can be created in the large volume of femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 30:3322–3327

    Article  PubMed  Google Scholar 

  14. Kızılgöz V, Sivrioğlu AK, Ulusoy GR, Aydın H, Karayol SS, Menderes U (2018) Analysis of the risk factors for anterior cruciate ligament injury: an investigation of structural tendencies. Clin Imaging 50:20–30

    Article  PubMed  Google Scholar 

  15. Koyama S, Tensho K, Shimodaira H, Iwaasa T, Kumaki D, Horiuchi H et al (2022) A new remnant preservation technique reduces bone tunnel enlargement after anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 30:2020–2028

    Article  PubMed  Google Scholar 

  16. Lee DK, Kim JH, Lee BH, Kim H, Jang MJ, Lee SS et al (2021) Influence of graft bending angle on femoral tunnel widening after double-bundle ACL reconstruction: comparison of transportal and outside-in techniques. Orthop J Sports Med 9:23259671211035780

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee SH, Lee ES, Ko TW, Lee YS (2019) Femoral tunnel placement in single-bundle, remnant-preserving anterior cruciate ligament reconstruction using a posterior trans-septal portal. Knee 26:628–635

    Article  PubMed  Google Scholar 

  18. Lee SM, Yoon KH, Lee SH, Hur D (2017) The relationship between ACL femoral tunnel position and postoperative MRI signal intensity. J Bone Joint Surg Am 99:379–387

    Article  PubMed  Google Scholar 

  19. Lee YS, Han SH, Jo J, Kwak K-s, Nha KW, Kim JH (2011) Comparison of 5 different methods for measuring stress radiographs to improve reproducibility during the evaluation of knee instability. Am J Sports Med 39:1275–1281

    Article  PubMed  Google Scholar 

  20. Lee YS, Sim JA, Kwak JH, Nam SW, Kim KH, Lee BK (2012) Comparative analysis of femoral tunnels between outside-in and transtibial double-bundle anterior cruciate ligament reconstruction: a 3-dimensional computed tomography study. Arthroscopy 28:1417–1423

    Article  PubMed  Google Scholar 

  21. Li H, Liu S, Sun Y, Li H, Chen S, Chen J (2019) Influence of graft bending angle on graft maturation, the femoral tunnel, and functional outcomes by 12 months after anterior cruciate ligament reconstruction. Orthop J Sports Med 7:2325967119882663

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Z, Li C, Li L, Wang P (2020) Correlation between notch width index assessed via magnetic resonance imaging and risk of anterior cruciate ligament injury: an updated meta-analysis. Surg Radiol Anat 42:1209–1217

    Article  PubMed  Google Scholar 

  23. Liu F, Zhang S, Xiao Y, Feng X, Liang Z, Leung F et al (2022) Stenotic intercondylar notch is not a risk factor for posterior cruciate ligament rupture: a morphological analyses using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 30:1711–1717

    Article  PubMed  Google Scholar 

  24. Lutz PM, Achtnich A, Schütte V, Woertler K, Imhoff AB, Willinger L (2022) Anterior cruciate ligament autograft maturation on sequential postoperative MRI is not correlated with clinical outcome and anterior knee stability. Knee Surg Sports Traumatol Arthrosc 30:3258–3267

    Article  PubMed  Google Scholar 

  25. Mascarenhas R (2022) Editorial commentary: osseous anatomy of the knee in female patients is a significant risk factor for anterior cruciate ligament injury and anterior cruciate ligament graft failure. Arthroscopy 38:1605–1607

    Article  PubMed  Google Scholar 

  26. Nema SK, Balaji G, Akkilagunta S, Menon J, Poduval M, Patro D (2017) Radiologic assessment of femoral and tibial tunnel placement based on anatomic landmarks in arthroscopic single bundle anterior cruciate ligament reconstruction. Indian J Orthop 51:286–291

    Article  PubMed  PubMed Central  Google Scholar 

  27. Okutan AE, Kalkışım M, Gürün E, Ayas MS, Aynacı O (2022) Tibial slope, remnant preservation, and graft size are the most important factors affecting graft healing after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 30:1584–1593

    Article  PubMed  Google Scholar 

  28. Parkar AP, Adriaensen ME, Vindfeld S, Solheim E (2017) The anatomic centers of the femoral and tibial insertions of the anterior cruciate ligament: a systematic review of imaging and cadaveric studies reporting normal center locations. Am J Sports Med 45:2180–2188

    Article  PubMed  Google Scholar 

  29. Pedneault C, Laverdière C, Hart A, Boily M, Burman M, Martineau PA (2019) Evaluating the accuracy of tibial tunnel placement after anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 47:3187–3194

    Article  PubMed  Google Scholar 

  30. Schützenberger S, Grabner S, Schallmayer D, Kontic D, Keller F, Fialka C (2021) The risk of graft impingement still exists in modern ACL surgery and correlates with degenerative MRI signal changes. Knee Surg Sports Traumatol Arthrosc 29:2880–2888

    Article  PubMed  Google Scholar 

  31. Takahashi T, Saito T, Kubo T, Hirata K, Sawamura H, Suzuki T et al (2022) Evaluation of Tibial tunnel location with the femoral tunnel created behind the resident’s ridge in transtibial anterior cruciate ligament reconstruction. J Knee Surg 35:1132–1137

    Article  PubMed  Google Scholar 

  32. Tanksley JA, Werner BC, Conte EJ, Lustenberger DP, Burrus MT, Brockmeier SF et al (2017) ACL roof impingement revisited: does the independent femoral drilling technique avoid roof impingement with anteriorly placed Tibial tunnels? Orthop J Sports Med 5:2325967117704152

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tashiro Y, Gale T, Sundaram V, Nagai K, Irrgang JJ, Anderst W et al (2017) The graft bending angle can affect early graft healing after anterior cruciate ligament reconstruction: in vivo analysis with 2 years’ follow-up. Am J Sports Med 45:1829–1836

    Article  PubMed  Google Scholar 

  34. Teraoka T, Hashimoto Y, Takahashi S, Yamasaki S, Nishida Y, Nakamura H (2019) The relationship between graft intensity on MRI and tibial tunnel placement in anatomical double-bundle ACL reconstruction. Eur J Orthop Surg Traumatol 29:1749–1758

    Article  PubMed  Google Scholar 

  35. Thompson R, Hamilton D, Murray I, Lawson G (2022) Notchplasty is associated with decreased risk of anterior cruciate ligament graft revision. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-022-03305-z

    Article  PubMed  Google Scholar 

  36. Tran EP, Dingel AB, Terhune EB, Segovia NA, Vuong B, Ganley TJ et al (2021) Anterior cruciate ligament length in pediatric populations: an MRI study. Orthop J Sports Med 9:23259671211002290

    Article  PubMed  PubMed Central  Google Scholar 

  37. Unal M, Kose O, Aktan C, Gumussuyu G, May H, Kati YA (2021) Is there a role of meniscal morphology in the risk of noncontact anterior cruciate ligament rupture? A case-control study. J Knee Surg 34:570–580

    Article  PubMed  Google Scholar 

  38. van Groningen B, van der Steen MC, Janssen DM, van Rhijn LW, van der Linden AN, Janssen RP (2020) Assessment of graft maturity after anterior cruciate ligament reconstruction using autografts: a systematic review of biopsy and magnetic resonance imaging studies. Arthrosc Sports Med Rehabil 2:e377–e388

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wilson W, Hopper G, O’Boyle M, Henderson L, Blyth M (2022) Quantifying graft impingement in anterior cruciate ligament reconstruction. Knee 34:270–278

    Article  CAS  PubMed  Google Scholar 

  40. Yau WP, Chan YC (2023) Evaluation of graft ligamentization by MRI after anterior cruciate ligament reconstruction. Am J Sports Med 51:1466–1479

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

SYP, YBK, and YSL participated in study design and drafted the manuscript, SYP and JPYH performed the statistical analysis, SYP, JHC, and Nguyen collected the data and contributed to performing statistical analysis, SYP, YBK, and YSL conceived of the study, participated in coordination, and helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong Seuk Lee.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Ethical approval

Institutional Review Board approval was obtained before performing the study (IRB NO: B-2208-774-103).

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Cho, J.H., Ho, J.P.Y. et al. Graft impingement increases anterior cruciate ligament graft signal more than acute graft bending angle: magnetic resonance imaging-based study in outside-in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 31, 4379–4389 (2023). https://doi.org/10.1007/s00167-023-07491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-023-07491-z

Keywords

Navigation