Skip to main content

Advertisement

Log in

Soft-tissue fixation is not inferior to suture-anchor fixation in reconstruction of the medial patellofemoral ligament using a nonresorbable suture tape

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Reconstruction of the medial patellofemoral ligament (MPFL-R) with nonresorbable suture tape (FiberTape®, FT) is becoming popular. Patella-side fixation of the FT can be performed with suture anchors or via soft-tissue fixation. The aim of this study was to investigate whether patella-side soft-tissue fixation can achieve equivalent primary stability compared to suture-anchor fixation.

Methods

In ten human, fresh-frozen knee joint specimens (m/f 6/4; age 74 ± 9 a), the MPFL was identified and dissected near the femoral insertion site. In five knee joints, the MPFL-R using FT was performed with soft-tissue fixation at the patella (study group; SG), and in five knee joints, the FT was fixed via suture anchors (control group, CG). All reconstructions were evaluated until load to failure of the patella-side fixation with a displacement rate of 200 mm/min.

Results

The mean maximum load to failure in the SG was 395.3 ± 57.9 N. All reconstructions failed by complete tearing off the medial patellar retinaculum from its medial patellar margin, but fixation of the FT remained stable. In the CG, the mean maximum load to failure was 239.4 ± 54.5 N and was significantly different compared to the SG (p = 0.04). All reconstructions failed via pullout of the suture anchors. Stiffness and elongation did not differ between the groups, and no failure of the FT was observed in any of the specimens.

Conclusion

Primary stability of soft-tissue MPFL-R using FT was superior to suture-anchor fixation. Both fixation techniques provided sufficient primary stability, superior to previously reported native MPFL tensile strengths. MPFL-R with FT could be a possible alternative procedure for MPFL-R, eliminating potential complications due to autologous tendon graft harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambra LF, Franciozi CE, Phan A et al (2021) Isolated MPTL reconstruction fails to restore lateral patellar stability when compared to MPFL reconstruction. Knee Surg Sports Traumatol Arthrosc 29:793–799. https://doi.org/10.1007/s00167-020-06015-3

    Article  Google Scholar 

  2. Arendt EA, Askenberger M, Agel J et al (2018) Risk of Redislocation after primary patellar dislocation: a clinical prediction model based on magnetic resonance imaging variables. Am J Sports Med 46:3385–3390. https://doi.org/10.1177/0363546518803936

    Article  Google Scholar 

  3. Balcarek P, Ammon J, Frosch S et al (2010) Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 26:926–935. https://doi.org/10.1016/j.arthro.2009.11.004

    Article  Google Scholar 

  4. Berruto M, Ferrua P, Uboldi F et al (2014) Medial patellofemoral ligament reconstruction with bioactive synthetic ligament is an option. A 3-year follow-up study. Knee Surg Sports Traumatol Arthrosc 22:2419–2425. https://doi.org/10.1007/s00167-014-2970-0

    Article  Google Scholar 

  5. Burks RT, Desio SM, Bachus KN et al (1998) Biomechanical evaluation of lateral patellar dislocations. Am J Knee Surg 11:24–31

    CAS  Google Scholar 

  6. Criscenti G, de Maria C, Sebastiani E et al (2016) Reconstruction of medial patello-femoral ligament: Comparison of two surgical techniques. J Mech Behav Biomed Mater 59:272–278. https://doi.org/10.1016/j.jmbbm.2016.02.009

    Article  CAS  Google Scholar 

  7. Dornacher D, Lippacher S, Nelitz M et al (2018) Impact of five different medial patellofemoral ligament-reconstruction strategies and three different graft pre-tensioning states on the mean patellofemoral contact pressure: a biomechanical study on human cadaver knees. J Exp Orthop 5:25. https://doi.org/10.1186/s40634-018-0140-x

    Article  Google Scholar 

  8. Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225:736–743. https://doi.org/10.1148/radiol.2253011578

    Article  Google Scholar 

  9. Frings J, Balcarek P, Tscholl P et al (2020) Conservative versus surgical treatment for primary patellar dislocation. Dtsch Arztebl Int 117:279–286. https://doi.org/10.3238/arztebl.2020.0279

    Article  Google Scholar 

  10. Gesslein M, Merkl C, Bail HJ et al (2021) Refixation of large osteochondral fractures after patella dislocation shows better mid- to long-term outcome compared with debridement. Cartilage 13:966S-973S. https://doi.org/10.1177/1947603519886637

    Article  CAS  Google Scholar 

  11. Godin JA, Karas V, Visgauss JD et al (2015) Medial patellofemoral ligament reconstruction using a femoral loop button fixation technique. Arthrosc Tech 4:e601–e607. https://doi.org/10.1016/j.eats.2015.06.005

    Article  Google Scholar 

  12. Gurusamy P, Pedowitz JM, Carroll AN et al (2021) Medial patellofemoral ligament reconstruction for adolescents with acute first-time patellar dislocation with an associated loose body. Am J Sports Med 49:2159–2164. https://doi.org/10.1177/03635465211013543

    Article  Google Scholar 

  13. Hopper GP, Heusdens CHW, Dossche L et al (2019) Medial patellofemoral ligament repair with suture tape augmentation. Arthrosc Tech 8:e1–e5. https://doi.org/10.1016/j.eats.2018.08.021

    Article  Google Scholar 

  14. Hussein A, Sallam AA, Imam MA et al (2018) Surgical treatment of medial patellofemoral ligament injuries achieves better outcomes than conservative management in patients with primary patellar dislocation: a meta-analysis. J ISAKOS 3:98–104. https://doi.org/10.1136/jisakos-2017-000152

    Article  Google Scholar 

  15. Jaquith BP, Parikh SN (2017) Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop 37:484–490. https://doi.org/10.1097/BPO.0000000000000674

    Article  Google Scholar 

  16. Khemka A, Lord SJ, Doyle Z et al (2016) Minimally invasive medial patellofemoral ligament reconstruction for patellar instability using an artificial ligament: a 2 year follow-up. Knee 23:261–266. https://doi.org/10.1016/j.knee.2015.07.002

    Article  Google Scholar 

  17. Kluczynski MA, Miranda L, Marzo JM (2020) Prevalence and site of medial patellofemoral ligament injuries in patients with acute lateral patellar dislocations: a systematic review and meta-analysis. Orthop J Sports Med 8:2325967120967338. https://doi.org/10.1177/2325967120967338

    Article  Google Scholar 

  18. Lee PYF, Golding D, Rozewicz S et al (2018) Modern synthetic material is a safe and effective alternative for medial patellofemoral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:2716–2721. https://doi.org/10.1007/s00167-017-4711-7

    Article  Google Scholar 

  19. Lipscomb AB, Johnston RK, Snyder RB et al (1982) Evaluation of hamstring strength following use of semitendinosus and gracilis tendons to reconstruct the anterior cruciate ligament. Am J Sports Med 10:340–342. https://doi.org/10.1177/036354658201000603

    Article  CAS  Google Scholar 

  20. Mackay ND, Smith NA, Parsons N et al (2014) Medial patellofemoral ligament reconstruction for patellar dislocation: a systematic review. Orthop J Sports Med 2:2325967114544021. https://doi.org/10.1177/2325967114544021

    Article  Google Scholar 

  21. McNeilan RJ, Everhart JS, Mescher PK et al (2018) Graft choice in isolated medial patellofemoral ligament reconstruction: a systematic review with meta-analysis of rates of recurrent instability and patient-reported outcomes for autograft, allograft, and synthetic options. Arthroscopy 34:1340–1354. https://doi.org/10.1016/j.arthro.2017.11.027

    Article  Google Scholar 

  22. Mehl J, Otto A, Comer B et al (2020) Repair of the medial patellofemoral ligament with suture tape augmentation leads to similar primary contact pressures and joint kinematics like reconstruction with a tendon graft: a biomechanical comparison. Knee Surg Sports Traumatol Arthrosc 28:478–488. https://doi.org/10.1007/s00167-019-05668-z

    Article  Google Scholar 

  23. Migliorini F, Pilone M, Eschweiler J et al (2022) High rates of damage to the medial patellofemoral ligament, lateral trochlea, and patellar crest after acute patellar dislocation: magnetic resonance imaging analysis. Arthroscopy. https://doi.org/10.1016/j.arthro.2022.01.044

    Article  Google Scholar 

  24. Milinkovic DD, Fink C, Kittl C et al (2021) Anatomic and biomechanical properties of flat medial patellofemoral ligament reconstruction using an adductor magnus tendon graft: a human cadaveric study. Am J Sports Med 49:1827–1838. https://doi.org/10.1177/03635465211009540

    Article  Google Scholar 

  25. Milinkovic DD, Zimmermann F, Balcarek P (2022) Medial patellofemoral ligmant reconstruction using non-resorbable synthetic suture material yields comparable outcomes to reconstruction with a pedicled quadriceps tendon autograft when performed in addition to bony risk factor correction. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1177/03635465211063914

    Article  Google Scholar 

  26. Mountney J, Senavongse W, Amis AA et al (2005) Tensile strength of the medial patellofemoral ligament before and after repair or reconstruction. J Bone Joint Surg Br 87:36–40

    Article  CAS  Google Scholar 

  27. Nomura E, Horiuchi Y, Kihara M (2000) A mid-term follow-up of medial patellofemoral ligament reconstruction using an artificial ligament for recurrent patellar dislocation. Knee 7:211–215. https://doi.org/10.1016/s0968-0160(00)00072-7

    Article  CAS  Google Scholar 

  28. Parikh SN, Nathan ST, Wall EJ et al (2013) Complications of medial patellofemoral ligament reconstruction in young patients. Am J Sports Med 41:1030–1038. https://doi.org/10.1177/0363546513482085

    Article  Google Scholar 

  29. Post WR, Fithian DC (2018) Patellofemoral instability: a consensus statement from the aossm/pff patellofemoral instability workshop. Orthop J Sports Med 6:2325967117750352. https://doi.org/10.1177/2325967117750352

    Article  Google Scholar 

  30. Prince MR, King AH, Stuart MJ et al (2015) Treatment of patellofemoral cartilage lesions in the young, active patient. J Knee Surg 28:285–295. https://doi.org/10.1055/s-0035-1549018

    Article  Google Scholar 

  31. Raoulis V, Zibis A, Fyllos A et al (2021) Reconstruction of the medial patellofemoral ligament using two blind transverse semi-patella tunnels and an implant-free technique for patellar fixation: a technical note. J Orthop Surg Res 16:25. https://doi.org/10.1186/s13018-020-02161-z

    Article  Google Scholar 

  32. Sakamoto Y, Sasaki S, Kimura Y et al (2020) Patellofemoral contact pressure for medial patellofemoral ligament reconstruction using suture tape varies with the knee flexion angle: a biomechanical evaluation. Arthroscopy 36:1390–1395. https://doi.org/10.1016/j.arthro.2019.12.027

    Article  Google Scholar 

  33. Sallay PI, Poggi J, Speer KP et al (1996) Acute dislocation of the patella. A correlative pathoanatomic study. Am J Sports Med 24:52–60. https://doi.org/10.1177/036354659602400110

    Article  CAS  Google Scholar 

  34. Sanders TL, Pareek A, Hewett TE et al (2018) High rate of recurrent patellar dislocation in skeletally immature patients: a long-term population-based study. Knee Surg Sports Traumatol Arthrosc 26:1037–1043. https://doi.org/10.1007/s00167-017-4505-y

    Article  Google Scholar 

  35. Sanders TL, Pareek A, Hewett TE et al (2018) Incidence of first-time lateral patellar dislocation: a 21-year population-based study. Sports Health 10:146–151. https://doi.org/10.1177/1941738117725055

    Article  Google Scholar 

  36. Schneider DK, Grawe B, Magnussen RA et al (2016) Outcomes after isolated medial patellofemoral ligament reconstruction for the treatment of recurrent lateral patellar dislocations: a systematic review and meta-analysis. Am J Sports Med 44:2993–3005. https://doi.org/10.1177/0363546515624673

    Article  Google Scholar 

  37. Shah JN, Howard JS, Flanigan DC et al (2012) A systematic review of complications and failures associated with medial patellofemoral ligament reconstruction for recurrent patellar dislocation. Am J Sports Med 40:1916–1923. https://doi.org/10.1177/0363546512442330

    Article  Google Scholar 

  38. Sillanpää PJ, Mäenpää HM, Mattila VM et al (2008) Arthroscopic surgery for primary traumatic patellar dislocation: a prospective, nonrandomized study comparing patients treated with and without acute arthroscopic stabilization with a median 7-year follow-up. Am J Sports Med 36:2301–2309. https://doi.org/10.1177/0363546508322894

    Article  Google Scholar 

  39. Simonian PT, Harrison SD, Cooley VJ et al (1997) Assessment of morbidity of semitendinosus and gracilis tendon harvest for ACL reconstruction. Am J Knee Surg 10:54–59

    CAS  Google Scholar 

  40. Sundararajan SR, Ramakanth R, Jha AK et al (2022) Outside-in technique versus inside-out semitendinosus graft harvest technique in ACLR: a randomised control trial. Knee Surg Relat Res 34:16. https://doi.org/10.1186/s43019-022-00144-4

    Article  Google Scholar 

  41. Testa EA, Camathias C, Amsler F et al (2017) Surgical treatment of patellofemoral instability using trochleoplasty or MPFL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 25:2309–2320. https://doi.org/10.1007/s00167-015-3698-1

    Article  Google Scholar 

  42. Tsushima T, Tsukada H, Sasaki S et al (2019) Biomechanical analysis of medial patellofemoral ligament reconstruction: FiberTape® with knotless anchors versus a semitendinosus tendon autograft with soft anchors. J Orthop Sci 24:663–667. https://doi.org/10.1016/j.jos.2018.11.018

    Article  Google Scholar 

  43. van der List JP, DiFelice GS (2017) Primary repair of the medial collateral ligament with internal bracing. Arthrosc Tech 6:e933–e937. https://doi.org/10.1016/j.eats.2017.03.003

    Article  Google Scholar 

  44. Warren LF, Marshall JL (1979) The supporting structures and layers on the medial side of the knee. J Bone Joint Surg 61:56–62. https://doi.org/10.2106/00004623-197961010-00011

    Article  CAS  Google Scholar 

  45. Xu J-C, Zhang B-X, Jia Y-F et al (2021) Medial patellofemoral ligament reconstruction using suture tape for patellofemoral joint instability. Orthop Surg 13:847–854. https://doi.org/10.1111/os.12945

    Article  Google Scholar 

  46. Ye M, Zhang H, Liang Q (2020) Clinical outcomes after medial patellofemoral ligament reconstruction using transosseous sutures versus suture anchors: a prospective nonrandomized controlled trial. Orthop J Sports Med 8:2325967120917112. https://doi.org/10.1177/2325967120917112

    Article  Google Scholar 

  47. Zhang G-Y, Ding H-Y, Li E-M et al (2019) Incidence of second-time lateral patellar dislocation is associated with anatomic factors, age and injury patterns of medial patellofemoral ligament in first-time lateral patellar dislocation: a prospective magnetic resonance imaging study with 5-year follow-up. Knee Surg Sports Traumatol Arthrosc 27:197–205. https://doi.org/10.1007/s00167-018-5062-8

    Article  Google Scholar 

  48. Zheng ET, Kocher MS, Wilson BR et al (2022) Descriptive epidemiology of a surgical patellofemoral instability population of 492 patients. Orthop J Sports Med 10:23259671221108176. https://doi.org/10.1177/23259671221108174

    Article  Google Scholar 

  49. Zimmermann F, Börtlein J, Milinkovic DD et al (2020) Patient-reported outcomes after revision surgery for failed medial patellofemoral ligament reconstruction: a matched-pair analysis including correction of predisposing factors. Am J Sports Med 48:3566–3572. https://doi.org/10.1177/0363546520966354

    Article  Google Scholar 

Download references

Acknowledgements

No acknowledgements.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

FZ: Study design, data acquisition, data analysis, data interpretation, writing the paper, final approval. MS: Data acquisition, data analysis, final approval. SJ: Data acquisition, data analysis, final approval. DM: Data analysis, data interpretation, final approval. JF: Data analysis, data interpretation, final approval. PAG: Data analysis, data interpretation, final approval. PB: Study design, data analysis, data interpretation, writing the paper, final approval. SV: Study design, data acquisition, data analysis, data interpretation, writing the paper, final approval.

Corresponding author

Correspondence to Sven Vetter.

Ethics declarations

Conflict of interest

PB, MS, and DDM declare that they have no competing interests. FZ, PAG, JF, and SV are members of the MINTOS research group, who had grants/grants pending and technical support from Siemens Healthineers (Erlangen, Germany) and Nuvasive (SanDiego, USA). PAG and JF are unpaid members of an advisory board for Siemens. SJ receives research support from a company or supplier as a principal investigator: Johnson & Johnson DePuy, B. Braun Aesculap, Waldemar Link, Heraeus Medical, Zimmer Biomet, Peter Brehm GmbH, Ceramtec, Implantcast, Medacta, Mathys, Tornier. No company had involvement in the study design, collection, analysis, and interpretation of data, the writing of the manuscript, and the decision to submit the manuscript for publication.

Ethical approval

Ethics approval was given by the local ethics committee (Reference no. 2021-15764_1-andere Forschung erstvotierend).

Informed consent

No informed consent. Experimental study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, F., Schonhoff, M., Jäger, S. et al. Soft-tissue fixation is not inferior to suture-anchor fixation in reconstruction of the medial patellofemoral ligament using a nonresorbable suture tape. Knee Surg Sports Traumatol Arthrosc 31, 292–298 (2023). https://doi.org/10.1007/s00167-022-07120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-022-07120-1

Keywords

Navigation