Skip to main content

Advertisement

Log in

MRI as the optimal imaging modality for assessment and management of osteochondral fractures and loose bodies following traumatic patellar dislocation: a systematic review

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To assess the imaging modalities used for diagnosis, as well as the management decisions of patients with osteochondral fractures (OCF) and loose bodies following traumatic patellar dislocation.

Methods

According to the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA), MEDLINE, EMBASE, Web of Science, and PubMed were searched for results from January 1, 2000, to May 18, 2021, in two subsequent searches for English language studies that presented data on traumatic patellar dislocation. Quality of selected papers was assessed using the Methodological Index for Non-Randomised Studies (MINORS) and the Risk of Bias (RoB) 2.0 protocol. Results were qualitatively synthesised, and descriptive statistics were calculated.

Results

Forty studies totalling 3074 patients (1407 females) were included for the analysis. The mean age was 18.9 years (range 0–69). The population included 2446 first-time dislocations. The imaging modalities used were: 71.1% MRI, 52.6% plain radiography, 12.1% CT, and 0.68% ultrasound. In the 25 studies that reported the number of OCF, a total of 38.3% of patients were found to have OCF. 43.3% of patients with a first-time dislocation, and 34.7% of patients with previous dislocations, had at least one OCF. In the included paediatric studies (maximum age ≤ 18), the presence of OCF was detected by plain radiography in 10.1% of patients, MRI in 76.6% of patients, and CT in 89.5% of patients. For management of an OCF, the surgical options include fixation for larger pieces, excision for smaller pieces, and conservative management on a case-by-case basis.

Conclusions

Based on the current available evidence, assessment and management of patellar dislocations and subsequent OCFs vary, with radiography and MRI as the main imaging modalities on presentation and particular benefit for MRI in the paediatric population. Findings from this study suggest the highest rate of OCF detection with MRI, and thus, surgeons should consider routinely ordering an MRI in patients with first-time patellar dislocation. Regarding management of OCFs, the main indication for fixation was large fragments, while smaller and poor-quality fragments are excised. Few studies choose conservative management of OCFs due to later requirements for surgical management. Future work should focus on large, high-quality studies, and implementation of randomised control trials to form guidelines for imaging patellar dislocations and management of OCFs.

Level of evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Apostolovic M, Vukomanovic B, Slavkovic N, Vuckovic V, Vukcevic M, Djuricic G, Kocev N (2011) Acute patellar dislocation in adolescents: operative versus nonoperative treatment. Int Orthop 35:1483–1487

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arendt EA, England K, Agel J, Tompkins MA (2017) An analysis of knee anatomic imaging factors associated with primary lateral patellar dislocations. Knee Surg Sports Traumatol Arthrosc 25:3099–3107

    Article  PubMed  Google Scholar 

  3. Askenberger M, Arendt EA, Ekström W, Voss U, Finnbogason T, Janarv PM (2016) Medial patellofemoral ligament injuries in children with first-time lateral patellar dislocations: a magnetic resonance imaging and arthroscopic study. Am J Sports Med 44:152–158

    Article  PubMed  Google Scholar 

  4. Askenberger M, Bengtsson Moström E, Ekström W, Arendt EA, Hellsten A, Mikkelsen C, Janarv PM (2018) Operative repair of medial patellofemoral ligament injury versus knee brace in children with an acute first-time traumatic patellar dislocation: a randomized controlled trial. Am J Sports Med 46:2328–2340

    Article  PubMed  Google Scholar 

  5. Askenberger M, Janarv PM, Finnbogason T, Arendt EA (2017) Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med 45:50–58

    Article  PubMed  Google Scholar 

  6. Atkin DM, Fithian DC, Marangi KS, Stone ML, Dobson BE, Mendelsohn C (2000) Characteristics of patients with primary acute lateral patellar dislocation and their recovery within the first 6 months of injury. Am J Sports Med 28:472–479

    Article  CAS  PubMed  Google Scholar 

  7. Aulisa AG, Falciglia F, Giordano M, Savignoni P, Guzzanti V (2012) Galeazzi’s modified technique for recurrent patella dislocation in skeletally immature patients. J Orthop Sci 17:148–155

    Article  PubMed  Google Scholar 

  8. Baker H, Dickherber J, Reddy M, Rizzi A, Kahn A, Athiviraham A (2021) Diagnostic value of MRI and radiographs of the knee to identify osteochondral lesions in acute patellar instability. J Knee Surg. https://doi.org/10.1055/s-0041-1729551

    Article  PubMed  Google Scholar 

  9. Balcarek P, Ammon J, Frosch S, Walde TA, Schüttrumpf JP, Ferlemann KG, Lill H, Stürmer KM, Frosch KH (2010) Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 26:926–935

    Article  PubMed  Google Scholar 

  10. Balcarek P, Walde TA, Frosch S, Schüttrumpf JP, Wachowski MM, Stürmer KM, Frosch KH (2011) Patellar dislocations in children, adolescents and adults: a comparative MRI study of medial patellofemoral ligament injury patterns and trochlear groove anatomy. Eur J Radiol 79:415–420

    Article  PubMed  Google Scholar 

  11. Darabos N, Gusic N, Vlahovic T, Darabos A, Popovic I, Vlahovic I (2013) Staged management of knee dislocation in polytrauma injured patients. Injury 44:S40–S45

    Article  PubMed  Google Scholar 

  12. Deie M, Ochi M, Sumen Y, Adachi N, Kobayashi K, Yasumoto M (2005) A long-term follow-up study after medial patellofemoral ligament reconstruction using the transferred semitendinosus tendon for patellar dislocation. Knee Surg Sports Traumatol Arthrosc 13:522–528

    Article  PubMed  Google Scholar 

  13. Duthon VB (2015) Acute traumatic patellar dislocation. Orthop Traumatol Surg Res 101:S59–S67

    Article  CAS  PubMed  Google Scholar 

  14. Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225:736–743

    Article  PubMed  Google Scholar 

  15. Ercan N, Akmese R, Ulusoy B (2021) Single-tunnel and double-tunnel medial patellofemoral ligament reconstructions have similar clinical, radiological and functional results. Knee Surg Sports Traumatol Arthrosc 29:1904–1912

    Article  PubMed  Google Scholar 

  16. Felus J, Kowalczyk B, Lejman T (2008) Sonographic evaluation of the injuries after traumatic patellar dislocation in adolescents. J Pediatr Orthop 28:397–402

    Article  PubMed  Google Scholar 

  17. Florkow MC, Willemsen K, Mascarenhas VV, Oei EHG, van Stralen M, Seevinck PR (2022) Magnetic resonance imaging versus computed tomography for three-dimensional bone imaging of musculoskeletal pathologies: a review. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28067

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frobell RB, Lohmander LS, Roos HP (2007) Acute rotational trauma to the knee: poor agreement between clinical assessment and magnetic resonance imaging findings. Scand J Med Sci Sports 17:109–114

    CAS  PubMed  Google Scholar 

  19. Guerrero P, Li X, Patel K, Brown M, Busconi B (2009) Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study. BMC Sports Sci Med Rehabil 1:17

    Article  Google Scholar 

  20. Haas JP, Collins MS, Stuart MJ (2012) The “sliver sign”: a specific radiographic sign of acute lateral patellar dislocation. Skeletal Radiol 41:595–601

    Article  PubMed  Google Scholar 

  21. Harris JD, Brand JC, Cote MP, Dhawan A (2017) Research pearls: the significance of statistics and perils of pooling part 3: pearls and pitfalls of meta-analyses and systematic reviews. Arthroscopy 33:1594–1602

    Article  PubMed  Google Scholar 

  22. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JAC (2011) The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

  23. Horner NS, Moroz PA, Bhullar R, Habib A, Simunovic N, Wong I, Bedi A, Ayeni OR (2018) Open versus arthroscopic latarjet procedures for the treatment of shoulder instability: a systematic review of comparative studies. BMC Musculoskelet Disord 19:255

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huntington LS, Webster KE, Devitt BM, Scanlon JP, Feller JA (2020) Factors associated with an increased risk of recurrence after a first-time patellar dislocation: a systematic review and meta-analysis. Am J Sports Med 48:2552–2562

    Article  PubMed  Google Scholar 

  25. Ji G, Wang S, Wang X, Liu J, Niu J, Wang F (2017) Surgical versus nonsurgical treatments of acute primary patellar dislocation with special emphasis on the MPFL injury patterns. J Knee Surg 30:378–384

    Article  PubMed  Google Scholar 

  26. Johnson DS, Turner PG (2019) Management of the first-time lateral patellar dislocation. Knee 26:1161–1165

    Article  PubMed  Google Scholar 

  27. Kaewkongnok B, Bøvling A, Milandt N, Møllenborg C, Viberg B, Blønd L (2018) Does different duration of non-operative immobilization have an effect on the redislocation rate of primary patellar dislocation? A retrospective multicenter cohort study. Knee 25:51–58

    Article  PubMed  Google Scholar 

  28. Kang H, Li J, Chen XX, Wang T, Liu SC, Li HC (2018) Fixation versus excision of osteochondral fractures after patellar dislocations in adolescent patients: a retrospective cohort study. Chin Med J (Engl) 131:1296–1301

    Article  PubMed  Google Scholar 

  29. Katakura M, Mitchell AWM, Lee JC, Calder JD (2020) Is it time to replace CT with T1-VIBE MRI for the assessment of musculoskeletal injuries? Bone Jt J 102-B:1435–1437

    Article  Google Scholar 

  30. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krause EA, Lin CW, Ortega HW, Reid SR (2013) Pediatric lateral patellar dislocation: is there a role for plain radiography in the emergency department? J Emerg Med 44:1126–1131

    Article  PubMed  Google Scholar 

  32. Lee BJ, Christino MA, Daniels AH, Hulstyn MJ, Eberson CP (2013) Adolescent patellar osteochondral fracture following patellar dislocation. Knee Surg Sports Traumatol Arthrosc 21:1856–1861

    Article  PubMed  Google Scholar 

  33. Lee HL, Yau WP (2017) Management of traumatic patellar dislocation in a regional hospital in Hong Kong. Hong Kong Med J 23:122–128

    CAS  PubMed  Google Scholar 

  34. Ma L, Wang C, Chen B, Zhang F, Zhou J, Dong J, Wang F (2012) Medial patellar retinaculum plasty versus medial capsule reefing for patellar dislocation in children and adolescents. Arch Orthop Trauma Surg 132:1773–1780

    Article  PubMed  Google Scholar 

  35. Małecki K, Pruchnik-Witosławska K, Gwizdała D, Grzelak P, Flont P, Niedzielski KR (2019) Clinical results and MRI evaluation of patellar osteochondral fracture fixation following patellar dislocation. BioMed Res Int. https://doi.org/10.1155/2019/7943636

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nelitz M, Dreyhaupt J, Lippacher S (2013) Combined trochleoplasty and medial patellofemoral ligament reconstruction for recurrent patellar dislocations in severe trochlear dysplasia: a minimum 2-year follow-up study. Am J Sports Med 41:1005–1012

    Article  PubMed  Google Scholar 

  37. Nwachukwu BU, So C, Schairer WW, Shubin-Stein BE, Strickland SM, Green DW, Dodwell ER (2017) Economic decision model for first-time traumatic patellar dislocations in adolescents. Am J Sports Med 45:2267–2275

    Article  PubMed  Google Scholar 

  38. Oliva F, Ronga M, Longo UG, Testa V, Capasso G, Maffulli N (2009) The 3-in-1 procedure for recurrent dislocation of the patella in skeletally immature children and adolescents. Am J Sports Med 37:1814–1820

    Article  PubMed  Google Scholar 

  39. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  40. Parker L, Nazarian LN, Carrino JA, Morrison WB, Grimaldi G, Frangos AJ, Levin DC, Rao VM (2008) Musculoskeletal imaging: medicare use, costs, and potential for cost substitution. J Am Coll Radiol 5:182–188

    Article  PubMed  Google Scholar 

  41. Pedersen ME, DaCambra MP, Jibri Z, Dhillon S, Jen H, Jomha NM (2015) Acute osteochondral fractures in the lower extremities—approach to identification and treatment. Open Orthop J 9:463–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peltola EK, Koskinen SK (2011) Multidetector computed tomography evaluation of bony fragments and donor sites in acute patellar dislocation. Acta Radiol 52:86–90

    Article  PubMed  Google Scholar 

  43. Petri M, Ettinger M, Stuebig T, Brand S, Krettek C, Jagodzinski M, Omar M (2015) Current concepts for patellar dislocation. Arch Trauma Res 4:e29301

    Article  PubMed  PubMed Central  Google Scholar 

  44. Petri M, Liodakis E, Hofmeister M, Despang FJ, Maier M, Balcarek P, Voigt C, Haasper C, Zeichen J, Stengel D, Krettek C, Frosch KH, Lill H, Jagodzinski M (2013) Operative vs conservative treatment of traumatic patellar dislocation: results of a prospective randomized controlled clinical trial. Arch Orthop Trauma Surg 133:209–213

    Article  CAS  PubMed  Google Scholar 

  45. Ronga M, Oliva F, Giuseppe Longo U, Testa V, Capasso G, Maffulli N (2009) Isolated medial patellofemoral ligament reconstruction for recurrent patellar dislocation. Am J Sports Med 37:1735–1742

    Article  PubMed  Google Scholar 

  46. Rund JM, Hinckel BB, Sherman SL (2021) Acute patellofemoral dislocation: controversial decision-making. Curr Rev Musculoskelet Med 14:82–87

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sanders TG, Paruchuri NB, Zlatkin MB (2006) MRI of osteochondral defects of the lateral femoral condyle: incidence and pattern of injury after transient lateral dislocation of the patella. Am J Roentgenol 187:1332–1337

    Article  Google Scholar 

  48. Sanders TL, Pareek A, Hewett TE, Stuart MJ, Dahm DL, Krych AJ (2018) Incidence of first-time lateral patellar dislocation: a 21-year population-based study. Sports Health 10:146–151

    Article  PubMed  Google Scholar 

  49. Saragaglia D, Banihachemi JJ, Refaie R (2020) Acute instability of the patella: is magnetic resonance imaging mandatory? Int Orthop 44:2299–2303

    Article  PubMed  Google Scholar 

  50. Sawyer JR (2021) Radiation reduction strategies in pediatric orthopaedics. J Pediatr Orthop 41:S75

    Article  PubMed  Google Scholar 

  51. Shtarker H, Assaf M, Deltoff MN (2018) A new minimally invasive surgical technique for medial retinaculum repair following traumatic patellar dislocation. Eur J Orthop Surg Traumatol 28:811–817

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sillanpää PJ, Mäenpää HM, Mattila VM, Visuri T, Pihlajamäki H (2008) Arthroscopic surgery for primary traumatic patellar dislocation: a prospective, nonrandomized study comparing patients treated with and without acute arthroscopic stabilization with a median 7-year follow-up. Am J Sports Med 36:2301–2309

    Article  PubMed  Google Scholar 

  53. Sillanpää PJ, Mattila VM, Mäenpää H, Kiuru M, Visuri T, Pihlajamäki H (2009) Treatment with and without initial stabilizing surgery for primary traumatic patellar dislocation: a prospective randomized study. J Bone Jt Surg 91:263–273

    Article  Google Scholar 

  54. Sillanpää PJ, Salonen E, Pihlajamäki H, Mäenpää HM (2014) Medial patellofemoral ligament avulsion injury at the patella: classification and clinical outcome. Knee Surg Sports Traumatol Arthrosc 22:2414–2418

    Article  PubMed  Google Scholar 

  55. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 73:712–716

    Article  PubMed  Google Scholar 

  56. Song SY, Kim TS, Seo YJ (2020) Initial conservative treatment of osteochondral fracture of the patella following first-time patellar dislocation. BMC Musculoskelet Disord 21:617

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stefancin JJ, Parker RD (2007) First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res 455:93–101

    Article  PubMed  Google Scholar 

  58. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898

    Article  PubMed  Google Scholar 

  59. Taljanovic MS, Chang EY, Ha AS, Bartolotta RJ, Bucknor M, Chen KC, Gorbachova T, Khurana B, Klitzke AK, Lee KS, Mooar PA, Nguyen JC, Ross AB, Shih RD, Singer AD, Smith SE, Thomas JM, Yost WJ, Kransdorf MJ (2020) ACR appropriateness criteria® acute trauma to the knee. J Am Coll Radiol 17:S12–S25

    Article  PubMed  Google Scholar 

  60. Tompkins MA, Rohr SR, Agel J, Arendt EA (2018) Anatomic patellar instability risk factors in primary lateral patellar dislocations do not predict injury patterns: an MRI-based study. Knee Surg Sports Traumatol Arthrosc 26:677–684

    Article  PubMed  Google Scholar 

  61. Uimonen M, Ponkilainen V, Paloneva J, Mattila VM, Nurmi H, Repo JP (2021) Characteristics of osteochondral fractures caused by patellar dislocation. Orthop J Sports Med 9:2325967120974649

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zaidi A, Babyn P, Astori I, White L, Doria A, Cole W (2006) MRI of traumatic patellar dislocation in children. Pediatr Radiol 36:1163–1170

    Article  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren L. de SA.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 943 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, R.Y., Fitzpatrick, D.W.D., Cohen, D. et al. MRI as the optimal imaging modality for assessment and management of osteochondral fractures and loose bodies following traumatic patellar dislocation: a systematic review. Knee Surg Sports Traumatol Arthrosc 31, 1744–1752 (2023). https://doi.org/10.1007/s00167-022-07043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-022-07043-x

Keywords

Navigation