Skip to main content

Advertisement

Log in

Quadriceps tendon autograft for pediatric anterior cruciate ligament reconstruction results in promising postoperative function and rates of return to sports: A systematic review

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To assess the performance of the quadriceps tendon (QT) autograft in pediatric anterior cruciate ligament reconstruction (ACLR).

Methods

A systematic search of MEDLINE, PubMed, and EMBASE was conducted on March 1, 2021. Studies of all levels of evidence reporting outcomes and/or complications after QT autograft ACLR in pediatric patients (≤ 18 years old) were eligible for inclusion. Study demographics, patient demographics, reported outcomes, and complications were abstracted. Screening and data abstraction were designed in accordance with PRISMA and R-AMSTAR guidelines. Descriptive statistics were presented when applicable, with data for heterogeneous outcomes presented in narrative summary fashion.

Results

A total of 14 studies examining 596 patients (46.3% female), mean age 15.4 years, were included in this systematic review. Mean postoperative Lysholm scores ranged from 94.0 to 99.5. Mean postoperative IKDC subjective scores ranged from 75.9 to 94.0. Limb symmetry index ranged from 96.8 ± 10.4 to 100.4 ± 7.6% across multiple hop tests. Return to sports (RTS) rates ranged from 88.9 to 91.7%. Eleven studies reported postoperative complications, whereby 16 patients (4.8%) experienced contralateral complications and injuries. Forty-six patients (9.4%) experienced ipsilateral complications, including ten graft failures (2.5%) and two growth disturbances (0.6%).

Conclusions

QT autograft ACLR in the pediatric population retains the potential of regaining a preinjury level of knee stability, and yields promising postoperative function and rates of RTS, yielding comparable outcomes relative to HT autograft and the reference-standard BPTB ACLR that have previously been described in the literature. Moreover, use of the QT autograft is associated with low rates of postoperative complications, including graft failure and growth disturbances in this active and high-risk patient population in observational studies to date. Therefore, clinical equipoise exists to further appraise the influence of QT autograft on postoperative outcomes compared to aforementioned autograft options in a randomized control trial fashion.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albright J, Lepon AK, Pennuto A, Meyers R, Carry P, Vidal A, et al. (2017) Anterior cruciate ligament reconstruction in pediatric and adolescent patients: quadriceps tendon patellar autograft versus hamstring tendon autograft. Abstract presented at the Pediatric Orthopaedic Society of North America (POSNA), Barcelona, Spain, May 3–6, 2017

  2. Ashford WB, Kelly TH, Chapin RW, Xerogeanes JW, Slone HS (2018) Predicted quadriceps vs. quadrupled hamstring tendon graft size using 3-dimensional MRI. Knee 25(6):1100–1106

    Article  PubMed  Google Scholar 

  3. Attia AK, Nazef H, El Sweify KH, Adam MA, Abu Shaaban F, Arun K (2020) Failure rates of 5-strand and 6-strand vs quadrupled hamstring autograft ACL reconstruction: a comparative study of 413 patients with a minimum 2-year follow-up. Orthop J Sports Med 8(8):2325967120946326

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barfod KW, Feller JA, Hartwig T, Devitt BM, Webster KE (2019) Knee extensor strength and hop test performance following anterior cruciate ligament reconstruction. Knee 26(1):149–154

    Article  PubMed  Google Scholar 

  5. Bayer S, Meredith SJ, Wilson KW, de SA D, Pauyo T, Byrne K et al (2020) Knee morphological risk factors for anterior cruciate ligament injury. J Bone Jt Surg 102(8):703–718

    Article  Google Scholar 

  6. Bolton S, Bailey MEA, Wei R, McConnell JS (2022) Paediatric injuries around the knee: soft tissue injuries. Injury 53(2):237–243

    Article  CAS  PubMed  Google Scholar 

  7. Bram JT, Ganley TJ, Gans I, Parisien RL, Greenberg E (2021) Anterior cruciate ligament reconstruction in the pediatric population: Outcomes of quadriceps versus hamstring autografts. Abstract presented at American Academy of Pediatrics (AAP), virtual meeting, October 2–5, 2020

  8. Cavaignac E, Coulin B, Tscholl P, Fatmy NNM, Duthon V, Menetrey J (2017) Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 years. Am J Sports Med 45(6):1326–1332

    Article  PubMed  Google Scholar 

  9. Cristiani R, Mikkelsen C, Edman G, Forssblad M, Engström B, Stålman A (2020) Age, gender, quadriceps strength and hop test performance are the most important factors affecting the achievement of a patient-acceptable symptom state after ACL reconstruction. Knee Surg Sports Traumatol 28(2):369–380

    Article  Google Scholar 

  10. Cristiani R, Mikkelsen C, Forssblad M, Engström B, Stålman A (2019) Only one patient out of five achieves symmetrical knee function 6 months after primary anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27(11):3461–3470

    Article  PubMed  PubMed Central  Google Scholar 

  11. Crum RJ, de SA D, Kanakamedala AC, Obioha OA, Lesniak BP, Musahl V (2020) Aperture and suspensory fixation equally efficacious for quadriceps tendon graft fixation in primary ACL reconstruction: a systematic review. J Knee Surg 33(7):704–721

    Article  PubMed  Google Scholar 

  12. Colman KL, van der Merwe AE, Stull KE, Dobbe JGG, Streekstra GJ, van Rijn RR et al (2019) The accuracy of 3D virtual bone models of the pelvis for morphological sex estimation. Int J Legal Med 133(6):1853–1860

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dare DM, Fabricant PD, McCarthy MM, Rebolledo BJ, Green DW, Cordasco FA et al (2015) Increased lateral tibial slope is a risk factor for pediatric anterior cruciate ligament injury. Am J Sports Med 43(7):1632–1639

    Article  PubMed  Google Scholar 

  14. Diermeier T, Tisherman R, Hughes J, Tulman M, Coffey EB, Fink C et al (2020) Quadriceps tendon anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 28(8):2644–2656

    Article  PubMed  Google Scholar 

  15. Ellis HB, Matheny LM, Briggs KK, Pennock AT, Steadman JR (2012) Outcomes and revision rate after bone–patellar tendon–bone allograft versus autograft anterior cruciate ligament reconstruction in patients aged 18 years or younger with closed physes. Arthroscopy 28(12):1819–1825

    Article  PubMed  Google Scholar 

  16. Engelman GH, Carry PM, Hitt KG, Polousky JD, Vidal AF (2014) Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med 42(10):2311–2318

    Article  PubMed  Google Scholar 

  17. Flynn J, Mackenzie W, Kolstad K, Sandifer E, Jawad A, Galinat B (2000) Objective evaluation of knee laxity in children. J Pediatr Orthop 20(2):259–263

    Article  CAS  PubMed  Google Scholar 

  18. Frank RM, Higgins J, Bernardoni E, Cvetanovich G, Bush-Joseph CA, Verma NN et al (2017) Anterior cruciate ligament reconstruction basics: Bone–patellar tendon–bone autograft harvest. Arthrosc Tech 6(4):e1189–e1194

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gagliardi AG, Carry PM, Parikh HB, Albright JC (2020) Outcomes of quadriceps tendon with patellar bone block anterior cruciate ligament reconstruction in adolescent patients with a minimum 2-year follow-up. Am J Sports Med 48(1):93–98

    Article  PubMed  Google Scholar 

  20. Geib TM, Shelton WR, Phelps RA, Clark L (2009) Anterior cruciate ligament reconstruction using quadriceps tendon autograft: Intermediate-term outcome. Arthroscopy 25(12):1408–1414

    Article  PubMed  Google Scholar 

  21. Getgood AMJ, Bryant DM, Litchfield R, Heard M, McCormack RG, Rezansoff A et al (2020) Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-year outcomes from the STABILITY study randomized clinical trial. Am J Sports Med 48(2):285–297

    Article  PubMed  Google Scholar 

  22. Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC (2005) Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy 21(7):791–803

    Article  PubMed  Google Scholar 

  23. Goyal T, Paul S, Das L, Choudhury AK (2020) Correlation between anthropometric measurements and activity level on length and diameter of semitendinosus tendon autograft in knee ligament surgery: a prospective observational study. SICOT J 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harris JD, Brand JC, Cote MP, Dhawan A (2017) Research pearls: The significance of statistics and perils of pooling. Part 3: pearls and pitfalls of meta-analyses and systematic reviews. Arthroscopy 33(8):1594–1602

    Article  PubMed  Google Scholar 

  25. Harris JD, Brand JC, Cote MP, Faucett SC, Dhawan A (2017) Research pearls: The significance of statistics and perils of pooling. Part 1: clinical versus statistical significance. Arthroscopy 33(6):1102–1112

    Article  PubMed  Google Scholar 

  26. Henry J, Chotel F, Chouteau J, Fessy MH, Bérard J, Moyen B (2009) Rupture of the anterior cruciate ligament in children: early reconstruction with open physes or delayed reconstruction to skeletal maturity? Knee Surg Sports Traumatol Arthrosc 17(7):748–755

    Article  PubMed  Google Scholar 

  27. Horner NS, Moroz PA, Bhullar R, Habib A, Simunovic N, Wong I et al (2018) Open versus arthroscopic Latarjet procedures for the treatment of shoulder instability: a systematic review of comparative studies. BMC Musculoskelet Disord 19(1):255

    Article  PubMed  PubMed Central  Google Scholar 

  28. Howick J, Phillips B, Ball C, Sackett D, Badenoch D, Straus S et al (2009) Oxford Centre for Evidence-Based Medicine: Levels of evidence. Nuffield Department of Primary Care Health Sciences, Oxford. https://bit.ly/3wVKKt6. Accessed 24 Mar 2021

  29. Kaeding CC, Léger-St-Jean B, Magnussen RA (2017) Epidemiology and diagnosis of anterior cuciate ligament injuries. Clin Sports Med 36(1):1–8

    Article  PubMed  Google Scholar 

  30. Kanakamedala AC, de SA D, Obioha OA, Arakgi ME, Schmidt PB, Lesniak BP et al (2019) No difference between full thickness and partial thickness quadriceps tendon autografts in anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 27(1):105–116

    Article  PubMed  Google Scholar 

  31. Kay J, Memon M, Marx RG, Peterson D, Simunovic N, Ayeni OR (2018) Over 90% of children and adolescents return to sport after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 26(4):1019–1036

    Article  PubMed  Google Scholar 

  32. Kocher MS, Smith JT, Iversen MD, Brustowicz K, Ogunwole O, Andersen J et al (2011) Reliability, validity, and responsiveness of a modified International Knee Documentation Committee Subjective Knee Form (Pedi-IKDC) in children with knee disorders. Am J Sports Med 39(5):933–939

    Article  PubMed  Google Scholar 

  33. Kohl S, Stutz C, Decker S, Ziebarth K, Slongo T, Ahmad SS et al (2014) Mid-term results of transphyseal anterior cruciate ligament reconstruction in children and adolescents. Knee 21(1):80–85

    Article  PubMed  Google Scholar 

  34. Koo TK, Li MY (2016) Cracking the code: Providing insight into the fundamentals of research and evidence-based practice. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kung J, Chiappelli F, Cajulis OO, Avezova R, Kossan G, Chew L et al (2010) From systematic reviews to clinical recommendations for evidence-based health care: validation of Revised Assessment of Multiple Systematic Reviews (R-AMSTAR) for grading of clinical relevance. Open Dent J 16:84–91

    Google Scholar 

  36. Lameire DL, Abdel Khalik H, Zakharia A, Kay J, Almasri M, de SA D (2021) Bone grafting the patellar defect after bone–patellar tendon–bone anterior cruciate ligament reconstruction decreases anterior knee morbidity: a systematic review. Arthroscopy 37(7):2361–2376 (e1)

    Article  PubMed  Google Scholar 

  37. Lee GH, McCulloch P, Cole BJ, Bush-Joseph CA, Bach BR (2008) The incidence of acute patellar tendon harvest complications for anterior cruciate ligament reconstruction. Arthroscopy 24(2):162–166

    Article  PubMed  Google Scholar 

  38. Lee JK, Lee S, Lee MC (2016) Outcomes of anatomic anterior cruciate ligament reconstruction: bone-quadriceps tendon graft versus double-bundle hamstring tendon graft. Am J Sports Med 44(9):2323–2329

    Article  PubMed  Google Scholar 

  39. Levy B, Holland E, Bompadre V, Schmale GA, Saper M (2020) Differences in acute postoperative pain after ACL reconstruction in adolescent patients: all soft-tissue quadriceps versus hamstring autograft. Abstract presented at the 7th Annual PRiSM Meeting, Glendale, Arizona, January 23–25, 2020

  40. Lind M, Nielsen TG, Soerensen OG, Mygind-Klavsen B, Faunø P (2020) Quadriceps tendon grafts does not cause patients to have inferior subjective outcome after anterior cruciate ligament (ACL) reconstruction than do hamstring grafts: a 2-year prospective randomised controlled trial. Br J Sports Med 54(3):183–187

    Article  PubMed  Google Scholar 

  41. Lund B, Nielsen T, Faunø P, Christiansen SE, Lind M (2014) Is quadriceps tendon a better graft choice than patellar tendon? A prospective randomized study. Arthroscopy 30(5):593–598

    Article  PubMed  Google Scholar 

  42. Ma CB, Keifa E, Dunn W, Fu FH, Harner CD (2010) Can pre-operative measures predict quadruple hamstring graft diameter? Knee 17(1):81–83

    Article  PubMed  Google Scholar 

  43. Mauch C, Arnold MP, Wirries A, Mayer RR, Friederich NF, Hirschmann MT (2011) Anterior cruciate ligament reconstruction using quadriceps tendon autograft for adolescents with open physes—a technical note. Sport Med Arthrosc Rehabil Ther Technol 3(1):7

    Article  Google Scholar 

  44. Migliorini F, Eschweiler J, El Mansy Y, Quack V, Tingart M, Driessen A (2021) Quadriceps tendon autograft for primary ACL reconstruction: a Bayesian network meta-analysis. Eur J Orthop Surg Traumatol 31(6):1261

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E (2019) Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts. Am J Sports Med 47(14):3531–3540

    Article  PubMed  Google Scholar 

  46. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mueske NM, VandenBerg CD, Pace JL, Katzel MJ, Zaslow TL, Padilla RA et al (2018) Comparison of drop jump landing biomechanics and asymmetry among adolescents with hamstring, patellar and quadriceps tendon autografts for anterior cruciate ligament reconstruction. Knee 25(6):1065–1073

    Article  PubMed  Google Scholar 

  48. Muller B, Yabroudi MA, Lynch A, Lai CL, van Dijk CN, Fu FH et al (2016) Defining thresholds for the Patient Acceptable Symptom State for the IKDC subjective knee form and KOOS of patients who underwent ACL reconstruction. Am J Knee Sports Med 44(11):2820–2826

    Article  Google Scholar 

  49. Musahl V, Diermeier T, de SA D, Karlsson J (2020) ACL surgery: when to do it? Knee Surg Sports Traumatol Arthrosc 28(7):2023–2026

    Article  PubMed  Google Scholar 

  50. Oak SR, O’Rourke C, Strnad G, Andrish JT, Parker RD, Saluan P et al (2015) Statistical comparison of the pediatric versus adult IKDC subjective knee evaluation form in adolescents. Am J Sports Med 43(9):2216–2221

    Article  PubMed  Google Scholar 

  51. Ouweleen AJ, Hall TB, Finlayson CJ, Patel NM (2021) Risk factors for arthrofibrosis after pediatric anterior cruciate ligament reconstruction. Abstract presented at American Academy of Pediatrics (AAP), virtual meeting, October 2–5, 2020

  52. Pananwala H, Jabbar Y, Mills L, Symes M, Nandapalan H, Sefton A et al (2016) Tibial tunnel defect size as a risk factor in growth arrest following paediatric transphyseal anterior cruciate ligament reconstruction: an anatomical study. ANZ J Surg 86(9):691–695

    Article  PubMed  Google Scholar 

  53. Patel N, Hall T, Strohbach CA, King K, Lazzaretto L, Finlayson CJ (2020) Quadriceps tendon autograft for pediatric anterior cruciate ligament reconstruction results in less graft failure and meniscus re-injury. Abstract presented at the Pediatric Orthopaedic Society of North America (POSNA), virtual meeting, May 13 2020

  54. Pennock AT, Johnson KP, Turk RD, Bastrom TP, Chambers HG, Boutelle KE et al (2019) Transphyseal anterior cruciate ligament reconstruction in the skeletally immature: quadriceps tendon autograft versus hamstring tendon autograft. Orthop J Sports Med 7(9):232596711987245

    Article  Google Scholar 

  55. Peterson DC, Ayeni OR (2016) Pediatric anterior cruciate ligament reconstruction outcomes. Curr Rev Musculoskelet Med 9(4):339–347

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pichler W, Tesch NP, Schwantzer G, Fronhöfer G, Boldin C, Hausleitner L et al (2008) Differences in length and cross-section of semitendinosus and gracilis tendons and their effect on anterior cruciate ligament reconstruction. J Bone Jt Surg Br 90(4):516–519

    Article  CAS  Google Scholar 

  57. Pouderoux T, Muller B, Robert H (2020) Joint laxity and graft compliance increase during the first year following ACL reconstruction with short hamstring tendon grafts. Knee Surg Sports Traumatol Arthrosc 28(6):1979–1988

    Article  PubMed  Google Scholar 

  58. Rambaud AJM, Rossi J, Neri T, Samozino P, Edouard P (2020) Evolution of functional recovery using hop test assessment after ACL reconstruction. Int J Sports Med 41(10):696–704

    Article  PubMed  Google Scholar 

  59. Ray JM, Hendrix J (1992) Incidence, mechanism of injury, and treatment of fractures of the patella in children. J Trauma 32(4):464–467

    Article  CAS  PubMed  Google Scholar 

  60. Razi M, Moradi A, Safarcherati A, Askari A, Arasteh P, Ziabari EZ et al (2019) Allograft or autograft in skeletally immature anterior cruciate ligament reconstruction: a prospective evaluation using both partial and complete transphyseal techniques. J Orthop Surg Res 14(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  61. Redler LH, Brafman RT, Trentacosta N, Ahmad CS (2012) Anterior cruciate ligament reconstruction in skeletally immature patients with transphyseal tunnels. Arthroscopy 28(11):1710–1717

    Article  PubMed  Google Scholar 

  62. Richmond CG, Green DW, Cannamela PC, Martinson D, Shea KG (2018) The distance between the hamstring grafts and the physis and apophysis of the proximal tibia—implications for pediatric ACL reconstruction and physeal arrest. J ISAKOS 3(6):318–322

    Article  Google Scholar 

  63. Robinson JR, Haddad FS (2021) ACL graft failure: surgical technique may affect outcomes. Bone Jt J 103-B(9):1439–1441

    Article  Google Scholar 

  64. Runer A, Wierer G, Herbst E, Hepperger C, Herbort M, Gföller P et al (2018) There is no difference between quadriceps- and hamstring tendon autografts in primary anterior cruciate ligament reconstruction: a 2-year patient-reported outcome study. Knee Surg Sports Traumatol Arthrosc 26(2):605–614

    Article  PubMed  Google Scholar 

  65. Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ (2017) Hamstring autograft versus patellar tendon autograft for ACL reconstruction: Is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res 475(10):2459–2468

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schein LV, Altenburger A, Halligan CJ, Gagliardi AG, Howell DR, Albright JC (2020) Functional recovery and time for return to ballistics and return to sport testing after anterior cruciate ligament reconstruction utilizing quadriceps tendon patellar bone autograft in the adolescent. Abstract presented at the 7th Annual PRiSM Meeting, Glendale, Arizona, January 23–25, 2020

  67. Schmidt EC, Chin M, Aoyama JT, Ganley TJ, Shea KG, Hast MW (2019) Mechanical and microstructural properties of pediatric anterior cruciate ligaments and autograft tendons used for reconstruction. Orthop J Sports Med 7(1):232596711882166

    Article  Google Scholar 

  68. Seil R, Cucchi D, Ninulescu C, Dor J, Mouton C (2019) Anatomic anterior cruciate ligament reconstruction for adolescent patients with open physis. Ann Jt 4:31

    Article  Google Scholar 

  69. Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J (2016) Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthroscopy 32(1):71–75

    Article  PubMed  Google Scholar 

  70. Shea KG, Burlile JF, Richmond CG, Ellis HB, Wilson PL, Fabricant PD et al (2019) Quadriceps tendon graft anatomy in the skeletally immature patient. Orthop J Sport Med 7(7):232596711985657

    Article  Google Scholar 

  71. Sherman SL, Hogan DW, Geeslin DW, Rund JM, Burch MB, Ma R et al (2020) Comparison of bone-patella tendon-bone (BTB) and quadriceps autograft for ACL reconstruction in patients under 18 years of age. Abstract presented at the 7th Annual PRiSM Meeting, Glendale, Arizona, January 23–25, 2020

  72. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument. ANZ J Surg 73(9):712–716

    Article  PubMed  Google Scholar 

  73. Sugimoto D, Heyworth BE, Brodeur JJ, Kramer DE, Kocher MS, Micheli LJ (2019) Effect of graft type on balance and hop tests in adolescent males following anterior cruciate ligament reconstruction. J Sport Rehabil 28(5):468–475

    Article  PubMed  Google Scholar 

  74. Todd DC, Ghasem AD, Xerogeanes JW (2015) Height, weight, and age predict quadriceps tendon length and thickness in skeletally immature patients. Am J Sports Med 43(4):945–952

    Article  PubMed  Google Scholar 

  75. Vaughn NH, Jackson T, Hennrikus WL (2018) Anterior cruciate ligament reconstruction using quadriceps tendon autograft in adolescent athletes. Abstract presented at American Academy of Pediatrics (AAP) National Conference and Exhibition, San Francisco, California, October 22–25, 2016

  76. Werner BC, Yang S, Looney AM, Gwathmey FW (2016) Trends in pediatric and adolescent anterior cruciate ligament injury and reconstruction. J Pediatr Orthop 36(5):447–452

    Article  PubMed  Google Scholar 

  77. Widner M, Dunleavy M, Lynch S (2019) Outcomes following ACL reconstruction based on graft type: are all grafts equivalent? Curr Rev Musculoskelet Med 12(4):460–465

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wittstein JR, Wilson JB, Moorman CT (2006) Complications related to hamstring tendon harvest. Oper Tech Sports Med 14(1):15–19

    Article  Google Scholar 

  79. Xerogeanes JW (2019) Quadriceps tendon graft for anterior cruciate ligament reconstruction: the graft of the future! Arthroscopy 35(3):696–697

    Article  PubMed  Google Scholar 

  80. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q (2015) A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 22(2):100–110

    Article  PubMed  Google Scholar 

  81. Yucens M, Aydemir AN (2019) Trends in anterior cruciate ligament reconstruction in the last decade: a web-based analysis. J Knee Surg 32(6):519–524

    Article  PubMed  Google Scholar 

  82. Zacharias AJ, Whitaker JR, Collofello BS, Wilson BR, Unger RZ, Ireland ML et al (2021) Secondary injuries after pediatric anterior cruciate ligament reconstruction: a systematic review with quantitative analysis. Am J Sports Med 49(4):1086–1093

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Iman P.T.P. Khwaja for their ongoing support throughout this review.

Funding

There was no outside funding or grants received that assisted in this study.

Author information

Authors and Affiliations

Authors

Contributions

All co-authors warrant that they participated in the development of this research paper. Specifically, AZ and AU completed the screening process, data abstraction, and conducted the quality assessment of included studies. JK conducted pertinent statistical tests and analyses. AZ, DLL, and HAK drafted the manuscript. DdS conceived the study idea and was integral to all steps of the project. DdS, YH, and KN edited the manuscript and provided expert insight. All authors have read the final manuscript and have approved for it to be submitted for publication. All authors have agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Darren de SA.

Ethics declarations

Conflict of interest

DdS received funding from the Canadian Orthopaedic Foundation and the Physicians’ Services Incorporated Foundation to conduct a study assessing QT autograft ACLR in the pediatric population.

Ethical approval

No IRB approval was required or obtained for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Search strategy

Appendix: Search strategy

1. anterior cruciate ligament/

2. “anterior cruciate ligament”.ti,ab

3. ACL.ti,ab

4. 1 or 2 or 3

5. exp surgery/

6. operat*.ti,ab

7. surg*.ti,ab

8. reconstruct*.ti,ab

9. 5 or 6 or 7 or 8

10. exp Quadriceps Muscle/

11. quadricep* femoris.ti,ab

12. (rectus femoris or vastus intermedius).mp. or vastus lateralis.ti,ab. [mp = title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

13. 10 or 11 or 12

14. 4 and 9 and 13

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharia, A., Lameire, D.L., Abdel Khalik, H. et al. Quadriceps tendon autograft for pediatric anterior cruciate ligament reconstruction results in promising postoperative function and rates of return to sports: A systematic review. Knee Surg Sports Traumatol Arthrosc 30, 3659–3672 (2022). https://doi.org/10.1007/s00167-022-06930-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-022-06930-7

Keywords

Navigation