Skip to main content

Current trends in the anterior cruciate ligament part 1: biology and biomechanics

Abstract

A trend within the orthopedic community is rejection of the belief that “one size fits all.” Freddie Fu, among others, strived to individualize the treatment of anterior cruciate ligament (ACL) injuries based on the patient’s anatomy. Further, during the last two decades, greater emphasis has been placed on improving the outcomes of ACL reconstruction (ACL-R). Accordingly, anatomic tunnel placement is paramount in preventing graft impingement and restoring knee kinematics. Additionally, identification and management of concomitant knee injuries help to re-establish knee kinematics and prevent lower outcomes and registry studies continue to determine which graft yields the best outcomes. The utilization of registry studies has provided several large-scale epidemiologic studies that have bolstered outcomes data, such as avoiding allografts in pediatric populations and incorporating extra-articular stabilizing procedures in younger athletes to prevent re-rupture. In describing the anatomic and biomechanical understanding of the ACL and the resulting improvements in terms of surgical reconstruction, the purpose of this article is to illustrate how basic science advancements have directly led to improvements in clinical outcomes for ACL-injured patients.

Level of evidence

V.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abebe ES, Kim J-P, Utturkar GM, Taylor DC, Spritzer CE, Moorman CT et al (2011) The effect of femoral tunnel placement on ACL graft orientation and length during in vivo knee flexion. J Biomech 44(10):1914–1920

    PubMed  PubMed Central  Google Scholar 

  2. Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T et al (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14(12):1307–1314

    PubMed  Google Scholar 

  3. Akoto R, Alm L, Drenck TC, Frings J, Krause M, Frosch K-H (2020) Slope-correction osteotomy with lateral extra-articular tenodesis and revision anterior cruciate ligament reconstruction is highly effective in treating high-grade anterior knee laxity. Am J Sports Med 48(14):3478–3485

    PubMed  PubMed Central  Google Scholar 

  4. Alentorn-Geli E, Seijas R, Martínez-De la Torre A, Cuscó X, Steinbacher G, Álvarez-Díaz P et al (2019) Effects of autologous adipose-derived regenerative stem cells administered at the time of anterior cruciate ligament reconstruction on knee function and graft healing. J Orthop Surg 27(3):1–8

    Google Scholar 

  5. Altman GH, Horan RL, Weitzel P, Richmond JC (2008) The use of long-term bioresorbable scaffolds for anterior cruciate ligament repair. J Am Acad Orthop Surg 16(4):177–187

    PubMed  Google Scholar 

  6. Behzadi C, Welsch GH, Petersen J-P, Schoennagel BP, Bannas P, Kaul MG et al (2018) T2 relaxation times of the anterolateral femoral cartilage in patients after ACL-reconstruction with and without a deep lateral femoral notch sign. Eur J Radiol 106:85–91

    PubMed  Google Scholar 

  7. Bell KM, Rahnemai-Azar AA, Irarrazaval S, Guenther D, Fu FH, Musahl V et al (2018) In situ force in the anterior cruciate ligament, the lateral collateral ligament, and the anterolateral capsule complex during a simulated pivot shift test. J Orthop Res 36(3):847–853

    PubMed  Google Scholar 

  8. Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG (1998) Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16(4):414–420

    CAS  PubMed  Google Scholar 

  9. Belvedere C, Ensini A, Feliciangeli A, Cenni F, D’Angeli V, Giannini S et al (2012) Geometrical changes of knee ligaments and patellar tendon during passive flexion. J Biomech 45(11):1886–1892

    CAS  PubMed  Google Scholar 

  10. Bernholt DL, Dornan GJ, DePhillipo NN, Aman ZS, Kennedy MI, LaPrade RF (2020) High-grade posterolateral tibial plateau impaction fractures in the setting of a primary anterior cruciate ligament tear are correlated with an increased preoperative pivot shift and inferior postoperative outcomes after anterior cruciate ligament reconstruction. Am J Sports Med 48(9):2185–2194

    PubMed  Google Scholar 

  11. Biercevicz AM, Akelman MR, Rubin LE, Walsh EG, Merck D, Fleming BC (2015) The uncertainty of predicting intact anterior cruciate ligament degeneration in terms of structural properties using T2* relaxometry in a human cadaveric model. J Biomech 48(6):1188–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bohn MB, Petersen AK, Nielsen DB, Sorensen H, Lind M (2016) Three-dimensional kinematic and kinetic analysis of knee rotational stability in ACL-deficient patients during walking, running and pivoting. J Exp Orthop 3(27):1–9

    Google Scholar 

  13. Boisgard S, Levai JP, Geiger B, Saidane K, Landjerit B (1999) Study of the variations in length of the anterior cruciate ligament during flexion of the knee: use of a 3D model reconstructed from MRI sections. Surg Radiol Anat 21(5):313–317

    CAS  PubMed  Google Scholar 

  14. Brophy RH, Selby RM, Altchek DW (2006) Anterior cruciate ligament revision: double-bundle augmentation of primary vertical graft. Arthroscopy 22(6):683.e681-685

    Google Scholar 

  15. Chandrashekar N, Slauterbeck J, Hashemi J (2005) Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med 33(10):1492–1498

    PubMed  Google Scholar 

  16. Chaudhari AMW, Zelman EA, Flanigan DC, Kaeding CC, Nagaraja HN (2009) ACL-injured subjects have smaller ACLs than matched controls: an MRI study. Am J Sports Med 37(7):1282–1287

    PubMed  PubMed Central  Google Scholar 

  17. Chen H, Chen B, Tie K, Fu Z, Chen L (2018) Single-bundle versus double-bundle autologous anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials at 5-year minimum follow-up. J Orthop Surg Res 13(1):1–12

    Google Scholar 

  18. Chiba D, Gale T, Nishida K, Suntaxi F, Lesniak BP, Fu FH et al (2021) Lateral extra-articular tenodesis contributes little to change In vivo kinematics after anterior cruciate ligament reconstruction: a randomized controlled trial. Am J Sports Med 49(7):1803–1812

    PubMed  Google Scholar 

  19. Chu CR (2021) Can we afford to ignore the biology of joint healing and graft incorporation after ACL reconstruction? J Orthop Res

  20. Cone SG, Howe D, Fisher MB (2019) size and shape of the human anterior cruciate ligament and the impact of sex and skeletal growth. JBJS Rev 7(6):e8

    PubMed  PubMed Central  Google Scholar 

  21. Cristino S, Grassi F, Toneguzzi S, Piacentini A, Grigolo B, Santi S et al (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A 73(3):275–283

    CAS  PubMed  Google Scholar 

  22. Dare DM, Fabricant PD, McCarthy MM, Rebolledo BJ, Green DW, Cordasco FA et al (2015) Increased lateral tibial slope Is a risk factor for pediatric anterior cruciate ligament Injury: an MRI-based case-control study of 152 patients. Am J Sports Med 43(7):1632–1639

    PubMed  Google Scholar 

  23. Dargel J, Feiser J, Gotter M, Pennig D, Koebke J (2009) Side differences in the anatomy of human knee joints. Knee Surg Sports Traumatol Arthrosc 17(11):1368–1376

    PubMed  Google Scholar 

  24. Dargel J, Gotter M, Mader K, Pennig D, Koebke J, Schmidt-Wiethoff R (2007) Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strategies Trauma Limb Reconstr 2(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dargel J, Schmidt-Wiethoff R, Feiser J, Koebke J, Schlüter-Brust K, Eysel P et al (2011) Relationship between human femorotibial joint configuration and the morphometry of the anterior cruciate ligament. Arch Orthop Trauma Surg 131(8):1095–1105

    PubMed  Google Scholar 

  26. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23(10):2846–2852

    PubMed  Google Scholar 

  27. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Jt Surg Br 76(5):745–749

    CAS  Google Scholar 

  28. Dimitriou D, Reimond M, Foesel A, Baumgaertner B, Zou D, Tsai T-Y et al (2021) The deep lateral femoral notch sign: a reliable diagnostic tool in identifying a concomitant anterior cruciate and anterolateral ligament injury. Knee Surg Sports Traumatol Arthrosc 29(6):1968–1976

    PubMed  Google Scholar 

  29. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP (1995) Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 29(11):1363–1371

    CAS  PubMed  Google Scholar 

  30. Fan H, Liu H, Toh SL, Goh JCH (2009) Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 30(28):4967–4977

    CAS  PubMed  Google Scholar 

  31. Ferretti M, Levicoff EA, Macpherson TA, Moreland MS, Cohen M, Fu FH (2007) The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy 23(3):278–283

    PubMed  Google Scholar 

  32. Figueroa D, Figueroa F, Calvo R, Vaisman A, Ahumada X, Arellano S (2015) Platelet-rich plasma use in anterior cruciate ligament surgery: systematic review of the literature. Arthroscopy 31(5):981–988

    PubMed  Google Scholar 

  33. Figueroa D, Melean P, Calvo R, Vaisman A, Zilleruelo N, Figueroa F et al (2010) Magnetic resonance imaging evaluation of the integration and maturation of semitendinosus-gracilis graft in anterior cruciate ligament reconstruction using autologous platelet concentrate. Arthroscopy 26(10):1318–1325

    PubMed  Google Scholar 

  34. Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA (2009) Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med 37(11):2259–2272

    PubMed  Google Scholar 

  35. Frank JM, Moatshe G, Brady AW, Dornan GJ, Coggins A, Muckenhirn KJ et al (2017) Lateral meniscus posterior root and meniscofemoral ligaments as stabilizing structures in the ACL-deficient knee: a biomechanical study. Orthop J Sports Med 5(6):2325967117695756

    PubMed  PubMed Central  Google Scholar 

  36. Fu F, Byrne KJ, Lucidi GA (2021) Editorial commentary: outcomes after anterior cruciate ligament reconstruction are defined by individual anatomy, including both soft tissue and bone morphology: it’s all important. Arthroscopy 37(8):2542–2544

    PubMed  Google Scholar 

  37. Fu FH, Karlsson J (2010) A long journey to be anatomic. Knee Surg Sports Traumatol Arthrosc 18(9):1151–1153

    PubMed  Google Scholar 

  38. Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS (2015) Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc 23(3):640–648

    PubMed  Google Scholar 

  39. Fujimaki Y, Thorhauer E, Sasaki Y, Smolinski P, Tashman S, Fu FH (2016) Quantitative in situ analysis of the anterior cruciate ligament: length, midsubstance cross-sectional area, and insertion site areas. Am J Sports Med 44(1):118–125

    PubMed  Google Scholar 

  40. Fung DT, Zhang L-Q (2003) Modeling of ACL impingement against the intercondylar notch. Clin Biomech 18(10):933–941

    Google Scholar 

  41. Gali JC, Camargo DB, Oliveira FAMD, Pereira RHN, Silva PACD (2018) Descriptive anatomy of the anterior cruciate ligament femoral insertion. Rev Bras Ortop 53(4):421–426

    PubMed  PubMed Central  Google Scholar 

  42. Gardner E, O’Rahilly R (1968) The early development of the knee joint in staged human embryos. J Anat 102(Pt 2):289–299

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Google Scholar 

  44. Grassi A, Pizza N, Zambon Bertoja J, Macchiarola L, Lucidi GA, Dal Fabbro G et al (2021) Higher risk of contralateral anterior cruciate ligament (ACL) injury within 2 years after ACL reconstruction in under-18-year-old patients with steep tibial plateau slope. Knee Surg Sports Traumatol Arthrosc 29(6):1690–1700

    PubMed  Google Scholar 

  45. Guenoun D, Vaccaro J, Le Corroller T, Barral P-A, Lagier A, Pauly V et al (2017) A dynamic study of the anterior cruciate ligament of the knee using an open MRI. Surg Radiol Anat 39(3):307–314

    PubMed  Google Scholar 

  46. Guenther D, Irarrázaval S, Albers M, Vernacchia C, Irrgang JJ, Musahl V et al (2017) Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size. Knee Surg Sports Traumatol Arthrosc 25(5):1576–1582

    PubMed  Google Scholar 

  47. Guenther D, Irarrázaval S, Nishizawa Y, Vernacchia C, Thorhauer E, Musahl V et al (2017) Variation in the shape of the tibial insertion site of the anterior cruciate ligament: classification is required. Knee Surg Sports Traumatol Arthrosc 25(8):2428–2432

    PubMed  Google Scholar 

  48. Hansson A, Hashom N, Falson F, Rousselle P, Jordan O, Borchard G (2012) In vitro evaluation of an RGD-functionalized chitosan derivative for enhanced cell adhesion. Carbohydr Polym 90(4):1494–1500

    CAS  PubMed  Google Scholar 

  49. Hashemi J, Chandrashekar N, Cowden C, Slauterbeck J (2005) An alternative method of anthropometry of anterior cruciate ligament through 3-D digital image reconstruction. J Biomech 38(3):551–555

    CAS  PubMed  Google Scholar 

  50. Hashemi J, Mansouri H, Chandrashekar N, Slauterbeck JR, Hardy DM, Beynnon BD (2011) Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J Orthop Res 29(7):993–1001

    PubMed  Google Scholar 

  51. Hees T, Petersen W (2018) Anterior closing-wedge osteotomy for posterior slope correction. Arthrosc Tech 7(11):e1079–e1087

    PubMed  PubMed Central  Google Scholar 

  52. Herbst E, Hoser C, Tecklenburg K, Filipovic M, Dallapozza C, Herbort M et al (2015) The lateral femoral notch sign following ACL injury: frequency, morphology and relation to meniscal injury and sports activity. Knee Surg Sports Traumatol Arthrosc 23(8):2250–2258

    PubMed  Google Scholar 

  53. Högerle S, Letsch R, Sievers KW (1998) ACL reconstruction by patellar tendon. Arch Orthop Trauma Surg 117(1):58–61

    PubMed  Google Scholar 

  54. Hosseini A, Gill TJ, Li G (2009) In vivo anterior cruciate ligament elongation in response to axial tibial loads. J Orthop Sci 14(3):298–306

    PubMed  PubMed Central  Google Scholar 

  55. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres. Knee Surg Sports Traumatol Arthrosc 24(1):254–259

    PubMed  Google Scholar 

  56. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Proportional evaluation of anterior cruciate ligament footprint size and knee bony morphology. Knee Surg Sports Traumatol Arthrosc 23(11):3157–3162

    PubMed  Google Scholar 

  57. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2015) Size correlation between the tibial anterior cruciate ligament footprint and the tibia plateau. Knee Surg Sports Traumatol Arthrosc 23(4):1147–1152

    PubMed  Google Scholar 

  58. Iriuchishima T, Ryu K, Yorifuji H, Aizawa S, Fu FH (2014) Commonly used ACL autograft areas do not correlate with the size of the ACL footprint or the femoral condyle. Knee Surg Sports Traumatol Arthrosc 22(7):1573–1579

    PubMed  Google Scholar 

  59. Iriuchishima T, Shirakura K, Yorifuji H, Aizawa S, Fu FH (2013) Size comparison of ACL footprint and reconstructed auto graft. Knee Surg Sports Traumatol Arthrosc 21(4):797–803

    PubMed  Google Scholar 

  60. Iriuchishima T, Shirakura K, Yorifuji H, Aizawa S, Murakami T, Fu FH (2013) ACL footprint size is correlated with the height and area of the lateral wall of femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 21(4):789–796

    PubMed  Google Scholar 

  61. Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH (2014) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22(1):207–213

    PubMed  Google Scholar 

  62. Irrgang JJ, Tashman S, Patterson CG, Musahl V, West R, Oostdyk A et al (2021) Anatomic single vs double-bundle ACL reconstruction: a randomized clinical trial-Part 1: clinical outcomes. Knee Surg Sports Traumatol Arthrosc 29(8):2665–2675

    PubMed  PubMed Central  Google Scholar 

  63. Järvelä T (2007) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 15(5):500–507

    PubMed  Google Scholar 

  64. Jordan SS, DeFrate LE, Wook Nha K, Papannagari R, Gill TJ, Li G (2007) The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 35(4):547–554

    PubMed  Google Scholar 

  65. Joshi SM, Mastrangelo AN, Magarian EM, Fleming BC, Murray MM (2009) Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament. Am J Sports Med 37(12):2401–2410

    PubMed  PubMed Central  Google Scholar 

  66. Katouda M, Soejima T, Kanazawa T, Tabuchi K, Yamaki K, Nagata K (2011) Relationship between thickness of the anteromedial bundle and thickness of the posterolateral bundle in the normal ACL. Knee Surg Sports Traumatol Arthrosc 19(8):1293–1298

    PubMed  Google Scholar 

  67. Kawaguchi Y, Kondo E, Onodera J, Kitamura N, Sasaki T, Yagi T et al (2013) Tunnel enlargement and coalition after anatomic double-bundle anterior cruciate ligament reconstruction with hamstring tendon autografts: a computed tomography study. Orthop J Sports Med 1(1):2325967113486441

    PubMed  PubMed Central  Google Scholar 

  68. Kolbe R, Schmidt-Hebbel A, Forkel P, Pogorzelski J, Imhoff AB, Feucht MJ (2019) Steep lateral tibial slope and lateral-to-medial slope asymmetry are risk factors for concomitant posterolateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 27(8):2585–2591

    PubMed  Google Scholar 

  69. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36(9):1675–1687

    PubMed  Google Scholar 

  70. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17(3):213–219

    PubMed  Google Scholar 

  71. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–113

    PubMed  Google Scholar 

  72. Lansdown D, Ma CB (2018) The influence of tibial and femoral bone morphology on knee kinematics in the ACL injured knee. Clin Sports Med 37(1):127–136

    PubMed  Google Scholar 

  73. Lansdown DA, Pedoia V, Zaid M, Amano K, Souza RB, Li X et al (2017) Variations in knee kinematics after ACL injury and after reconstruction are correlated with bone shape differences. Clin Orthop Relat Res 475(10):2427–2435

    PubMed  PubMed Central  Google Scholar 

  74. Lattermann C, Jacobs CA, Proffitt Bunnell M, Huston LJ, Gammon LG, Johnson DL et al (2017) A multicenter study of early anti-inflammatory treatment in patients with acute anterior cruciate ligament tear. Am J Sports Med 45(2):325–333

    PubMed  Google Scholar 

  75. Lee BH, Jangir R, Kim HY, Shin JM, Chang M, Kim K et al (2017) Comparison of anterior cruciate ligament volume after anatomic double-bundle anterior cruciate ligament reconstruction. Knee 24(3):580–587

    PubMed  Google Scholar 

  76. Lee JK, Lee S, Seong SC, Lee MC (2015) Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 23(8):2297–2305

    PubMed  Google Scholar 

  77. Li G, DeFrate LE, Rubash HE, Gill TJ (2005) In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthop Res 23(2):340–344

    PubMed  Google Scholar 

  78. Lin LJ, Akpinar B, Meislin RJ (2020) Tibial slope and anterior cruciate ligament reconstruction outcomes. JBJS Rev 8(4):

    PubMed  Google Scholar 

  79. Liou J-J, Rothrauff BB, Alexander PG, Tuan RS (2018) Effect of platelet-rich plasma on chondrogenic differentiation of adipose—and bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 24(19–20):1432–1443

    CAS  PubMed  Google Scholar 

  80. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SLY (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19(3):297–304

    PubMed  Google Scholar 

  81. Lucidi GA, Grassi A, Di Paolo S, Agostinone P, Neri MP, Macchiarola L et al (2021) The lateral femoral notch sign Is correlated With increased rotatory laxity after anterior cruciate ligament injury: pivot shift quantification with a surgical navigation system. Am J Sports Med 49(3):649–655

    PubMed  Google Scholar 

  82. Lui PPY, Wong OT, Lee YW (2014) Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction. Am J Sports Med 42(3):681–689

    PubMed  Google Scholar 

  83. Maestro A, Herruzo I, Varillas-Delgado D, Martin-Saborido C (2021) Subjective assessment reported by patients shows differences between single-bundle and double-bundle anterior cruciate ligament reconstruction, systematic review and meta-analysis. Sci Rep 11(1):1–15

    Google Scholar 

  84. Majima T, Funakosi T, Iwasaki N, Yamane S-T, Harada K, Nonaka S et al (2005) Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J Orthop Sci 10(3):302–307

    CAS  PubMed  Google Scholar 

  85. Marchiori GPA, Sancisi N, Berni M, Conconi M, Luzi L, Cassiolas G, Zaffagnini S, Lopomo NF (2019) Integration of micro-CT and uniaxial loading to analyse the evolution of 3D microstructure under increasing strain: application to the anterior cruciate ligament. Mater Today Proc 7:501–507

    CAS  Google Scholar 

  86. Marouane H, Shirazi-Adl A, Adouni M, Hashemi J (2014) Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. J Biomech 47(6):1353–1359

    CAS  PubMed  Google Scholar 

  87. Masuko T, Iwasaki N, Yamane S, Funakoshi T, Majima T, Minami A et al (2005) Chitosan-RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering. Biomaterials 26(26):5339–5347

    CAS  PubMed  Google Scholar 

  88. Matsumoto T, Ingham SM, Mifune Y, Osawa A, Logar A, Usas A et al (2012) Isolation and characterization of human anterior cruciate ligament-derived vascular stem cells. Stem Cells Dev 21(6):859–872

    CAS  PubMed  Google Scholar 

  89. McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA et al (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Jt Surg Am 93(14):1310–1317

    Google Scholar 

  90. Mirzatolooei F, Alamdari MT, Khalkhali HR (2013) The impact of platelet-rich plasma on the prevention of tunnel widening in anterior cruciate ligament reconstruction using quadrupled autologous hamstring tendon. Bone Jt J 95-B(1):65–69

    CAS  Google Scholar 

  91. Monaco E, Maestri B, Labianca L, Speranza A, Kelly MJ, D’Arrigo C et al (2010) Navigated knee kinematics after tear of the ACL and its secondary restraints: preliminary results. Orthopedics 33(10 Suppl):87–93

    PubMed  Google Scholar 

  92. Moon SW, Park S, Oh M, Wang JH (2021) Outcomes of human umbilical cord blood-derived mesenchymal stem cells in enhancing tendon-graft healing in anterior cruciate ligament reconstruction: an exploratory study. Knee Surg Relat Res

  93. Morimoto Y, Ferretti M, Ekdahl M, Smolinski P, Fu FH (2009) Tibiofemoral joint contact area and pressure after single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy 25(1):62–69

    PubMed  Google Scholar 

  94. Mountcastle SB, Posner M, Kragh JF, Taylor DC (2007) Gender differences in anterior cruciate ligament injury vary with activity: epidemiology of anterior cruciate ligament injuries in a young, athletic population. Am J Sports Med 35(10):1635–1642

    PubMed  Google Scholar 

  95. Muller B, Bowman KF, Bedi A (2013) ACL graft healing and biologics. Clin Sports Med 32(1):93–109

    PubMed  Google Scholar 

  96. Murawski CD, Wolf MR, Araki D, Muller B, Tashman S, Fu FH (2013) Anatomic anterior cruciate ligament reconstruction: current concepts and future perspective. Cartilage 4(3 Suppl):27S-37S

    PubMed  PubMed Central  Google Scholar 

  97. Murray MM, Fleming BC (2013) Biology of anterior cruciate ligament injury and repair: kappa delta ann doner Vaughn award paper 2013. J Orthop Res 31(10):1501–1506

    PubMed  PubMed Central  Google Scholar 

  98. Murray MM, Kalish LA, Fleming BC, Flutie B, Freiberger C, Henderson RN et al (2019) Bridge-enhanced anterior cruciate ligament repair: two-year results of a first-in-human study. Orthop J Sports Med 7(3):2325967118824356

    PubMed  PubMed Central  Google Scholar 

  99. Murray MM, Spindler KP, Abreu E, Muller JA, Nedder A, Kelly M et al (2007) Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res 25(1):81–91

    PubMed  Google Scholar 

  100. Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB (2007) Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen–platelet-rich plasma scaffold. J Orthop Res 25(8):1007–1017

    CAS  PubMed  Google Scholar 

  101. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597

    PubMed  Google Scholar 

  102. Musahl V, Herbst E, Burnham JM, Fu FH (2018) The anterolateral complex and anterolateral ligament of the knee. J Am Acad Orthop Surg 26(8):261–267

    PubMed  Google Scholar 

  103. Nagai K, Kamada K, Kay J, Hoshino Y, Matsushita T, Kuroda R et al (2021) Clinical outcomes after anterior cruciate ligament reconstruction in patients with a concomitant segond fracture: a systematic review. Am J Sports Med (Online ahead of print)

  104. Nguyen DT, Ramwadhdoebe TH, van der Hart CP, Blankevoort L, Tak PP, van Dijk CN (2014) Intrinsic healing response of the human anterior cruciate ligament: an histological study of reattached ACL remnants. J Orthop Res 32(2):296–301

    PubMed  Google Scholar 

  105. Nishida K, Gale T, Chiba D, Suntaxi F, Lesniak B, Fu F et al (2021) The effect of lateral extra-articular tenodesis on in vivo cartilage contact in combined anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc (Online ahead of print)

  106. Noyes FR, Huser LE, Levy MS (2017) Rotational knee instability in ACL-deficient knees: role of the anterolateral ligament and iliotibial band as defined by tibiofemoral compartment translations and rotations. J Bone Jt Surg Am 99(4):305–314

    Google Scholar 

  107. Odensten M, Gillquist J (1985) Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Jt Surg Am 67(2):257–262

    CAS  Google Scholar 

  108. Orrego M, Larrain C, Rosales J, Valenzuela L, Matas J, Durruty J et al (2008) Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy 24(12):1373–1380

    PubMed  Google Scholar 

  109. Park H-S, Ahn C, Fung DT, Ren Y, Zhang L-Q (2010) A knee-specific finite element analysis of the human anterior cruciate ligament impingement against the femoral intercondylar notch. J Biomech 43(10):2039–2042

    PubMed  PubMed Central  Google Scholar 

  110. Patel SA, Hageman J, Quatman CE, Wordeman SC, Hewett TE (2014) Prevalence and location of bone bruises associated with anterior cruciate ligament injury and implications for mechanism of injury: a systematic review. Sports Med 44(2):281–293

    PubMed  PubMed Central  Google Scholar 

  111. Petersen W, Tretow H, Weimann A, Herbort M, Fu FH, Raschke M et al (2007) Biomechanical evaluation of two techniques for double-bundle anterior cruciate ligament reconstruction: one tibial tunnel versus two tibial tunnels. Am J Sports Med 35(2):228–234

    PubMed  Google Scholar 

  112. Pfeiffer TR, Burnham JM, Hughes JD, Kanakamedala AC, Herbst E, Popchak A et al (2018) An increased lateral femoral condyle ratio Is a risk factor for anterior cruciate ligament injury. J Bone Jt Surg Am 100(10):857–864

    Google Scholar 

  113. Pfeiffer TR, Burnham JM, Kanakamedala AC, Hughes JD, Zlotnicki J, Popchak A et al (2019) Distal femur morphology affects rotatory knee instability in patients with anterior cruciate ligament ruptures. Knee Surg Sports Traumatol Arthrosc 27(5):1514–1519

    PubMed  Google Scholar 

  114. Radice F, Yánez R, Gutiérrez V, Rosales J, Pinedo M, Coda S (2010) Comparison of magnetic resonance imaging findings in anterior cruciate ligament grafts with and without autologous platelet-derived growth factors. Arthroscopy 26(1):50–57

    PubMed  Google Scholar 

  115. Rodner CM, Adams DJ, Diaz-Doran V, Tate JP, Santangelo SA, Mazzocca AD et al (2006) Medial opening wedge tibial osteotomy and the sagittal plane: the effect of increasing tibial slope on tibiofemoral contact pressure. Am J Sports Med 34(9):1431–1441

    PubMed  Google Scholar 

  116. Rothrauff BB, Numpaisal PO, Lauro BB, Alexander PG, Debski RE, Musahl V et al (2016) Augmented repair of radial meniscus tear with biomimetic electrospun scaffold: an in vitro mechanical analysis. J Exp Orthop 3(1):23

    PubMed  PubMed Central  Google Scholar 

  117. Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46(3):531–543

    PubMed  Google Scholar 

  118. Sánchez M, Anitua E, Azofra J, Prado R, Muruzabal F, Andia I (2010) Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy 26(4):470–480

    PubMed  Google Scholar 

  119. Seil R, Mouton C, Coquay J, Hoffmann A, Nührenbörger C, Pape D et al (2018) Ramp lesions associated with ACL injuries are more likely to be present in contact injuries and complete ACL tears. Knee Surg Sports Traumatol Arthrosc 26(4):1080–1085

    PubMed  Google Scholar 

  120. Shao H-J, Chen CS, Lee Y-T, Wang J-H, Young T-H (2010) The phenotypic responses of human anterior cruciate ligament cells cultured on poly(ϵ-caprolactone) and chitosan. J Biomed Mater Res A 93A(4):1297–1305

    CAS  Google Scholar 

  121. Shao H-J, Lee Y-T, Chen C-S, Wang J-H, Young T-H (2010) Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials 31(17):4695–4705

    CAS  PubMed  Google Scholar 

  122. Shimizu T, Markes AR, Samaan MA, Tanaka MS, Souza RB, Li X et al (2020) Patients with abnormal limb kinetics at 6 months after anterior cruciate ligament reconstruction have an increased risk of persistent medial meniscal abnormality at 3 years. Orthop J Sports Med 8(1):2325967119895248

    PubMed  PubMed Central  Google Scholar 

  123. Siebold R, Ellert T, Metz S, Metz J (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy 24(5):585–592

    PubMed  Google Scholar 

  124. Siebold R, Ellert T, Metz S, Metz J (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24(2):154–161

    PubMed  Google Scholar 

  125. Silva A, Sampaio R, Fernandes R, Pinto E (2014) Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 22(1):66–71

    PubMed  Google Scholar 

  126. Silva A, Sampaio R, Pinto E (2010) Femoral tunnel enlargement after anatomic ACL reconstruction: a biological problem? Knee Surg Sports Traumatol Arthrosc 18(9):1189–1194

    PubMed  Google Scholar 

  127. Silvers-Granelli H (2021) Why female athletes injure their ACL’s more frequently? What can we do to mitigate their risk? Int J Sports Phys Ther 16(4):971–977

    PubMed  PubMed Central  Google Scholar 

  128. Śmigielski R, Zdanowicz U, Drwięga M, Ciszek B, Ciszkowska-Łysoń B, Siebold R (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23(11):3143–3150

    PubMed  Google Scholar 

  129. Song G-Y, Ni Q-K, Zheng T, Zhang Z-J, Feng H, Zhang H (2020) Slope-reducing tibial osteotomy combined with primary anterior cruciate ligament reconstruction produces improved knee stability in patients with steep posterior tibial slope, excessive anterior tibial subluxation in extension, and chronic meniscal posterior horn tears. Am J Sports Med 48(14):3486–3494

    PubMed  Google Scholar 

  130. Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard J-M, Freychet B et al (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42(8):1873–1880

    PubMed  Google Scholar 

  131. Sonnery-Cottet B, Praz C, Rosenstiel N, Blakeney WG, Ouanezar H, Kandhari V et al (2018) Epidemiological evaluation of meniscal ramp lesions in 3214 anterior cruciate ligament–injured knees from the SANTI study group database: a risk factor analysis and study of secondary meniscectomy rates following 769 ramp repairs. Am J Sports Med 46(13):3189–3197

    PubMed  Google Scholar 

  132. Strocchi R, de Pasquale V, Gubellini P, Facchini A, Marcacci M, Buda R et al (1992) The human anterior cruciate ligament: histological and ultrastructural observations. J Anat 180(Pt 3):515–519

    PubMed  PubMed Central  Google Scholar 

  133. Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR et al (2015) Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med 43(4):839–847

    PubMed  PubMed Central  Google Scholar 

  134. Suruga M, Horaguchi T, Iriuchishima T, Yahagi Y, Iwama G, Tokuhashi Y et al (2017) Morphological size evaluation of the mid-substance insertion areas and the fan-like extension fibers in the femoral ACL footprint. Arch Orthop Trauma Surg 137(8):1107–1113

    PubMed  Google Scholar 

  135. Swami VG, Cheng-Baron J, Hui C, Thompson R, Jaremko JL (2013) Reliability of estimates of ACL attachment locations in 3-dimensional knee reconstruction based on routine clinical MRI in pediatric patients. Am J Sports Med 41(6):1319–1329

    PubMed  Google Scholar 

  136. Takahashi M, Doi M, Abe M, Suzuki D, Nagano A (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34(5):787–792

    PubMed  Google Scholar 

  137. Tampere T, Van Hoof T, Cromheecke M, Van der Bracht H, Chahla J, Verdonk P et al (2017) The anterior cruciate ligament: a study on its bony and soft tissue anatomy using novel 3D CT technology. Knee Surg Sports Traumatol Arthrosc 25(1):236–244

    PubMed  Google Scholar 

  138. Tashiro Y, Lucidi GA, Gale T, Nagai K, Herbst E, Irrgang JJ et al (2018) Anterior cruciate ligament tibial insertion site is elliptical or triangular shaped in healthy young adults: high-resolution 3-T MRI analysis. Knee Surg Sports Traumatol Arthrosc 26(2):485–490

    PubMed  Google Scholar 

  139. Tashman S, Anderst W, Kolowich P, Havstad S, Arnoczky S (2004) Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J Orthop Res 22(5):931–941

    PubMed  Google Scholar 

  140. Taylor KA, Cutcliffe HC, Queen RM, Utturkar GM, Spritzer CE, Garrett WE et al (2013) In vivo measurement of ACL length and relative strain during walking. J Biomech 46(3):478–483

    CAS  PubMed  Google Scholar 

  141. Tena-Arregui J, Barrio-Asensio C, Viejo-Tirado F, Puerta-Fonollá J, Murillo-González J (2003) Arthroscopic study of the knee joint in fetuses. Arthroscopy 19(8):862–868

    PubMed  Google Scholar 

  142. Thaunat M, Fayard JM, Guimaraes TM, Jan N, Murphy CG, Sonnery-Cottet B (2016) Classification and surgical repair of ramp lesions of the medial meniscus. Arthrosc Tech 5(4):e871–e875

    PubMed  PubMed Central  Google Scholar 

  143. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 west point cadets. Am J Sports Med 31(6):831–842

    PubMed  Google Scholar 

  144. Utturkar GM, Irribarra LA, Taylor KA, Spritzer CE, Taylor DC, Garrett WE et al (2013) The effects of a valgus collapse knee position on in vivo ACL elongation. Ann Biomed Eng 41(1):123–130

    CAS  PubMed  Google Scholar 

  145. Vadalà A, Iorio R, De Carli A, Ferretti M, Paravani D, Caperna L et al (2013) Platelet-rich plasma: does it help reduce tunnel widening after ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 21(4):824–829

    PubMed  Google Scholar 

  146. Valentí Nin JR, Mora Gasque G, Valentí Azcárate A, Aquerreta Beola JD, Hernandez Gonzalez M (2009) Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy 25(11):1206–1213

    Google Scholar 

  147. Ventura A, Terzaghi C, Borgo E, Verdoia C, Gallazzi M, Failoni S (2005) Use of growth factors in ACL surgery: preliminary study. J Orthopaed Traumatol 6(2):76–79

    Google Scholar 

  148. Wang C, Hu Y, Zhang S, Ruan D, Huang Z, He P et al (2021) Application of stem cell therapy for ACL graft regeneration. Stem Cells Int

  149. Wang H-M, Shultz SJ, Ross SE, Henson RA, Perrin DH, Kraft RA et al (2019) Sex comparisons of in vivo anterior cruciate ligament morphometry. J Athl Train 54(5):513–518

    PubMed  PubMed Central  Google Scholar 

  150. Wang Y, Shimmin A, Ghosh P, Marks P, Linklater J, Connell D et al (2017) Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomised trial. Arthritis Res Ther 19(1):180

    PubMed  PubMed Central  Google Scholar 

  151. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41(12):2800–2804

    PubMed  Google Scholar 

  152. Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW et al (2014) Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL. Am J Sports Med 42(8):1796–1805

    PubMed  PubMed Central  Google Scholar 

  153. Wolf MR, Murawski CD, van Diek FM, van Eck CF, Huang Y, Fu FH (2015) Intercondylar notch dimensions and graft failure after single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23(3):680–686

    PubMed  Google Scholar 

  154. Wolters F, Vrooijink SHA, Van Eck CF, Fu FH (2011) Does notch size predict ACL insertion site size? Knee Surg Sports Traumatol Arthrosc 19(1):S17-21

    PubMed  Google Scholar 

  155. Woo SLY, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon: a cadaveric study comparing anterior tibial and rotational loads. J Bone Jt Surg Am 84(6):907–914

    Google Scholar 

  156. Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury. Am J Sports Med 40(7):1673–1681

    PubMed  PubMed Central  Google Scholar 

  157. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SLY (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666

    PubMed  Google Scholar 

  158. Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K et al (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26(6):611–619

    CAS  PubMed  Google Scholar 

  159. Yang C, Tashiro Y, Lynch A, Fu F, Anderst W (2018) Kinematics and arthrokinematics in the chronic ACL-deficient knee are altered even in the absence of instability symptoms. Knee Surg Sports Traumatol Arthrosc 26(5):1406–1413

    PubMed  Google Scholar 

  160. Yasuda K, Kondo E, Ichiyama H, Kitamura N, Tanabe Y, Tohyama H et al (2004) Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy 20(10):1015–1025

    PubMed  Google Scholar 

  161. Zantop T, Petersen W, Sekiya JK, Musahl V, Fu FH (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14(10):982–992

    PubMed  Google Scholar 

  162. Zelle BA, Brucker PU, Feng MT, Fu FH (2006) Anatomical double-bundle anterior cruciate ligament reconstruction. Sports Med 36(2):99–108

    PubMed  Google Scholar 

  163. Zeng C, Yang T, Wu S, Gao S-g, Li H, Deng Z-h et al (2016) Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sports Traumatol Arthrosc 24(3):830–837

    PubMed  Google Scholar 

Download references

Funding

There was no funding for this manuscript

Author information

Authors and Affiliations

Authors

Contributions

VM, EMN, GAL, RS, and JDH contributed to manuscript writing and editing. FM, SZ, and JK contributed to editing. FHF contributed to establishing the foundation of this work and his tireless efforts towards the field of orthopaedic surgery and ACL reconstruction facilitated the completion of this review.

Corresponding author

Correspondence to Ehab M. Nazzal.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable

Informed consent

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Musahl, V., Nazzal, E.M., Lucidi, G.A. et al. Current trends in the anterior cruciate ligament part 1: biology and biomechanics. Knee Surg Sports Traumatol Arthrosc 30, 20–33 (2022). https://doi.org/10.1007/s00167-021-06826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06826-y

Keywords

  • ACL
  • Trends
  • ACL injury
  • ACL reconstruction
  • ACL biology
  • ACL biomechanics
  • ACL kinematics
  • Regenerative medicine
  • Morphology