Skip to main content

Advertisement

Log in

Anterior cruciate ligament reconstruction with short hamstring grafts: the choice of femoral fixation device matters in controlling overall lengthening

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose was to conduct an independent biomechanical study comparing the main types of femoral fixation adapted to short hamstring grafts in anterior cruciate ligament (ACL) reconstruction surgery and to validate their performance.

Methods

The ACLip® Femoral, ToggleLoc™ Ziploop (TLZ), and Tape Locking Screw (TLS®) implants were tested in tension in the following three different configurations: implant alone, implant fixed on the femur without graft, and implant fixed on the femur with graft. Grafts alone were also tested. The femurs and the 4-strand semi-tendinosus grafts were derived from porcine and human models, respectively. Each set-up was subjected to the same protocol of creep (50 N for 30 s), cycling (1000 cycles between 50 and 250 N, 1 Hz), and load to failure (50 mm/min).

Results

A total of 93 tests were performed (30 ACLip®, 30 TLZ, 20 TLS®, and 13 ST4 alone). For the implants tested with femur and graft, the mean ± standard deviation (SD) overall elongation at 250 N after cycling was 5.2 ± 0.2 mm, 8.4 ± 2.1 mm, and 5.3 ± 0.8 mm, the mean ± SD ultimate load to failure was 736 ± 116 N, 830 ± 204 N, and 640 ± 242 N, and the mean ± SD stiffness at the 1000th cycle was 185 ± 15 N/mm, 172 ± 19 N/mm, and 178 ± 21 N/mm for ACLip®, ToggleLoc™, and TLS® devices, respectively. There was no significant difference between the implants except for post-cycling elongation between TLZ and the other two implants (p < 0.05).

Conclusion

The choice of femoral fixation device plays a decisive role in controlling the overall lengthening of an ACL reconstruction using a short hamstring graft. All implants validated the specifications in terms of ultimate load to failure, the TLS® system had, however, a low performance limit. ToggleLoc™ with adjustable loop should no longer be used on the femur side; instead the other types of fixation should be used to improve the overall elongation control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad SS, Hirschmann MT, Voumard B, Kohl S, Zysset P, Mukabeta T, Evangelopoulos DS, Ateschrang A (2018) Adjustable loop ACL suspension devices demonstrate less reliability in terms of reproducibility and irreversible displacement. Knee Surg Sports Traumatol Arthrosc 26:1392–1398

    Article  Google Scholar 

  2. Ayzenberg M, Arango D, Gershkovich GE, Samuel PS, Saing M (2017) Pullout strength of a novel hybrid fixation technique (Tape Locking ScrewTM) in soft-tissue ACL reconstruction: a biomechanical study in human and porcine bone. Orthop Traumatol Surg Res OTSR 103:591–595

    Article  CAS  Google Scholar 

  3. Barrow AE, Pilia M, Guda T, Kadrmas WR, Burns TC (2014) Femoral suspension devices for anterior cruciate ligament reconstruction: do adjustable loops lengthen? Am J Sports Med 42:343–349

    Article  Google Scholar 

  4. Bonney H, Colston BJ, Goodman AM (2011) Regional variation in the mechanical properties of cortical bone from the porcine femur. Med Eng Phys 33:513–520

    Article  CAS  Google Scholar 

  5. Brand J, Weiler A, Caborn DN, Brown CH, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774

    Article  Google Scholar 

  6. Chang MJ, Bae TS, Moon Y-W, Ahn JH, Wang JH (2018) A comparative biomechanical study of femoral cortical suspension devices for soft-tissue anterior cruciate ligament reconstruction: adjustable-length loop versus fixed-length loop. Arthroscopy 34:566–572

    Article  Google Scholar 

  7. Collette M (2012) An innovative method of hamstring graft preparation and a new concept of intratunnel tendon fixation: biomechanical evaluation. Curr Orthop Pract 23:577–583

    Article  Google Scholar 

  8. Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–407

    Article  CAS  Google Scholar 

  9. Eguchi A, Ochi M, Adachi N, Deie M, Nakamae A, Usman MA (2014) Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device. Knee 21:743–748

    Article  Google Scholar 

  10. Fu FH, Bennett CH, Lattermann C, Ma CB (1999) Current trends in anterior cruciate ligament reconstruction. Part 1: biology and biomechanics of reconstruction. Am J Sports Med 27:821–830

    Article  CAS  Google Scholar 

  11. Hamner DL, Brown CH, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557

    Article  CAS  Google Scholar 

  12. Höher J, Livesay GA, Ma CB, Withrow JD, Fu FH, Woo SL (1999) Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc 7:215–219

    Article  Google Scholar 

  13. Houck DA, Kraeutler MJ, McCarty EC, Bravman JT (2018) Fixed- versus adjustable-loop femoral cortical suspension devices for anterior cruciate ligament reconstruction: a systematic review and meta-analysis of biomechanical studies. Orthop J Sports Med 6:2325967118801762

    PubMed  PubMed Central  Google Scholar 

  14. Jin C, Paluvadi SV, Lee S, Yoo S, Song E-K, Seon J-K (2018) Biomechanical comparisons of current suspensory fixation devices for anterior cruciate ligament reconstruction. Int Orthop 42:1291–1296

    Article  Google Scholar 

  15. Johnson JS, Smith SD, LaPrade CM, Turnbull TL, LaPrade RF, Wijdicks CA (2015) A biomechanical comparison of femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction under high loads. Am J Sports Med 43:154–160

    Article  Google Scholar 

  16. Kirkpatrick SJ, Brooks BW (1998) Micromechanical behavior of cortical bone as inferred from laser speckle data. J Biomed Mater Res 39:373–379

    Article  CAS  Google Scholar 

  17. Lee C-H, Huang G-S, Chao K-H, Wu S-S, Chen Q (2005) Differential pretensions of a flexor tendon graft for anterior cruciate ligament reconstruction: a biomechanical comparison in a porcine knee model. Arthroscopy 21:540–546

    Article  Google Scholar 

  18. Morrison JB (1969) Function of the knee joint in various activities. Biomed Eng 4:573–580

    CAS  PubMed  Google Scholar 

  19. Morrison JB (1968) Bioengineering analysis of force actions transmitted by the knee joint. J Biomed Eng 3:164

    Google Scholar 

  20. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    Article  CAS  Google Scholar 

  21. Nye DD, Mitchell WR, Liu W, Ostrander RV (2017) Biomechanical comparison of fixed-loop and adjustable-loop cortical suspensory devices for metaphyseal femoral-sided soft tissue graft fixation in anatomic anterior cruciate ligament reconstruction using a porcine model. Arthroscopy 33:1225-1232.e1

    Article  Google Scholar 

  22. Papageorgiou CD, Ma CB, Abramowitch SD, Clineff TD, Woo SL (2001) A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med 29:620–626

    Article  CAS  Google Scholar 

  23. Pasquali M, Plante MJ, Monchik KO, Spenciner DB (2017) A comparison of three adjustable cortical button ACL fixation devices. Knee Surg Sports Traumatol Arthrosc 25:1613–1616

    Article  Google Scholar 

  24. Petre BM, Smith SD, Jansson KS, de Meijer P-P, Hackett TR, LaPrade RF, Wijdicks CA (2013) Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med 41:416–422

    Article  Google Scholar 

  25. Potel J-F, Franceschi J-P, Javois C, Jones D, Mouton C, Sbihi A, Seil R (2016) Valeur mécanique d’une fixation fémorale suspendue en os spongieux de tendons ischio-jambiers : étude des propriétés mécaniques de la fixation AClip® 12 modèles porcins et 12 mousses rigides de polyuréthane. Rev Chir Orthopédique Traumatol 102:S277

    Article  Google Scholar 

  26. Prado M, Martín-Castilla B, Espejo-Reina A, Serrano-Fernández JM, Pérez-Blanca A, Ezquerro F (2013) Close-looped graft suturing improves mechanical properties of interference screw fixation in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21:476–484

    Article  Google Scholar 

  27. Robert H, Bowen M, Odry G, Collette M, Cassard X, Lanternier H, De Polignac T (2015) A comparison of four tibial-fixation systems in hamstring-graft anterior ligament reconstruction. Eur J Orthop Surg Traumatol Orthop Traumatol 25:339–347

    Article  Google Scholar 

  28. Roos PJ, Hull ML, Howell SM (2004) Lengthening of double-looped tendon graft constructs in three regions after cyclic loading: a study using Roentgen stereophotogrammetric analysis. J Orthop Res 22:839–846

    Article  CAS  Google Scholar 

  29. Rosenberg T, Brown G, Deffner K (1997) Anterior cruciate ligament reconstruction with a quadrupled semitendinosus autograft. Sports Med Arthrosc Rev 5:51

    Google Scholar 

  30. Simonian PT, Erickson MS, Larson RV, O’kane JW, (2000) Tunnel expansion after hamstring anterior cruciate ligament reconstruction with 1-incision EndoButton femoral fixation. Arthroscopy 16:707–714

    Article  CAS  Google Scholar 

  31. Walton M (1999) Absorbable and metal interference screws: comparison of graft security during healing. Arthroscopy 15:818–826

    Article  CAS  Google Scholar 

  32. Wascher DC, Markolf KL, Shapiro MS, Finerman GA (1993) Direct in vitro measurement of forces in the cruciate ligaments. Part I: the effect of multiplane loading in the intact knee. J Bone Joint Surg Am 75:377–386

    Article  CAS  Google Scholar 

  33. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  Google Scholar 

  34. Woo SL-Y, Karaoğlu S, Dede O (2006) Contribution of biomechanics to anterior cruciate ligament reconstruction. Acta Orthop Traumatol Turc 40:94–100

    PubMed  Google Scholar 

Download references

Acknowledgements

Bruyère-Garnier Karine, Université Gustave Eiffel, Laboratoire de Biomécanique et Mécanique des Chocs, Bron, France, for technical support. Ardizzone Stéphane, Université Gustave Eiffel, Laboratoire de Biomécanique et Mécanique des Chocs, Bron, France, for technical support. Benboubaker Leila, Université Gustave Eiffel, Laboratoire de Biomécanique et Mécanique des Chocs, Bron, France, for technical support. Boyer Hélène, Direction de la Recherche en Santé, Hospices Civils de Lyon, France, for manuscript preparation. Nierde Vanessa, Laboratoire d’anatomie, Université Claude Bernard Lyon 1, Lyon, France, for technical support. Subtil Fabien, Service de Biostatistiques des Hospices Civils de Lyon—Pôle de Santé Publique, Equipe Biostatistique Santé—LBBE—Université Claude Bernard Lyon 1, for statistical analysis support.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

PR reviewed the literature, wrote the research protocol, conducted biomechanical tests, and wrote the manuscript. KE reviewed the literature, wrote the research protocol, conducted biomechanical tests, and proofread the manuscript. RF and BA supervised the research protocol, ensured technical assistance, and proofread the manuscript. GLL supervised the research protocol, conducted biomechanical tests, and proofread the manuscript.

Corresponding author

Correspondence to Romain Pacull.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not necessary.

Informed consent

Not necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacull, R., Kalk, E., Rongieras, F. et al. Anterior cruciate ligament reconstruction with short hamstring grafts: the choice of femoral fixation device matters in controlling overall lengthening. Knee Surg Sports Traumatol Arthrosc 30, 2215–2226 (2022). https://doi.org/10.1007/s00167-021-06783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06783-6

Keywords

Navigation