Skip to main content

Side-to-side anterior tibial translation on monopodal weightbearing radiographs as a sign of knee decompensation in ACL-deficient knees



To evaluate the influence of time from injury and meniscus tears on the side-to-side difference in anterior tibial translation (SSD-ATT) as measured on lateral monopodal weightbearing radiographs in both primary and secondary ACL deficiencies.


Data from 69 patients (43 males/26 females, median age 27—percentile 25–75: 20–37), were retrospectively extracted from their medical records. All had a primary or secondary ACL deficiency as confirmed by MRI and clinical examination, with a bilateral weightbearing radiograph of the knees at 15°–20° flexion available. Meniscal status was assessed on MRI images by a radiologist and an independent orthopaedic surgeon. ATT and posterior tibial slope (PTS) were measured on the lateral monopodal weightbearing radiographs for both the affected and the contralateral healthy side. A paired t-test was used to compare affected/healthy knees. Independent t-tests were used to compare primary/secondary ACL deficiencies, time from injury (TFI) (≤ 4 years/ > 4 years) and meniscal versus no meniscal tear.


ATT of the affected side was significantly greater than the contralateral side (6.2 ± 4.4 mm vs 3.5 ± 2.8 mm; p < 0.01). There was moderate correlation between ATT and PTS in both the affected and healthy knees (r = 0.43, p < 0.01 and r = 0.41, p < 0.01). SSD-ATT was greater in secondary ACL deficiencies (4.7 ± 3.8 vs 1.9 ± 3.2 mm; p < 0.01), patients with a TFI greater than 4 years (4.2 ± 3.8 vs 2.0 ± 3.0 mm; p < 0.01) and with at least one meniscal tear (3.9 ± 3.8 vs 0.7 ± 2.2 mm; p < 0.01). Linear regression showed that, in primary ACL deficiencies, SSD-ATT was expected to increase (+ 2.7 mm) only if both a meniscal tear and a TFI > 4 years were present. In secondary ACL deficiencies, SSD-ATT was mainly influenced by the presence of meniscal tears regardless of the TFI.


SSD-ATT was significantly greater in secondary ACL deficiencies, patients with a TFI greater than 4 years and with at least one meniscal tear. These results confirm that SSD-ATT is a time- and meniscal-dependent parameter, supporting the concept of gradual sagittal decompensation in ACL-deficient knees, and point out the importance of the menisci as secondary restraints of the anterior knee laxity. Monopodal weightbearing radiographs may offer an easy and objective method for the follow-up of ACL-injured patients to identify early signs of soft tissue decompensation under loading conditions.

Level of evidence

Level III.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Almekinders LC, Chiavetta JB (2001) Tibial subluxation in anterior cruciate ligament-deficient knees: implications for tibial tunnel placement. Arthroscopy 17(9):960–962

    CAS  Article  Google Scholar 

  2. 2.

    Asmakutlu O, Alis D, Topel C, Bankaoglu M (2021) Patients with ACL graft deficiency showed a higher frequency of knee osteoarthritis compared with patients with intact ACL graft in the medium term. Skeletal Radiol 50:137–148

    Article  Google Scholar 

  3. 3.

    Barcellona MG, Morrissey MC, Milligan P, Amis AA (2014) The effect of thigh muscle activity on anterior knee laxity in the uninjured and anterior cruciate ligament-injured knee. Knee Surg Sports Traumatol Arthrosc 22:2821–2829

    Article  Google Scholar 

  4. 4.

    Chavez A, Jimenez AE, Riepen D, Schell B, Khazzam M, Coyner KJ (2020) Anterior cruciate ligament tears: the impact of increased time from injury to surgery on intra-articular lesions. Orthop J Sports Med 8:2325967120967120

    Article  Google Scholar 

  5. 5.

    Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, New York

    Google Scholar 

  6. 6.

    Crues JV, Mink J, Levy TL, Lotysch M, Stoller DW (1987) Meniscal tears of the knee: accuracy of MR imaging. Radiology 164:445–448

    Article  Google Scholar 

  7. 7.

    Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey G (2019) Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears. Knee Surg Sports Traumatol Arthrosc 27:564–572

    Article  Google Scholar 

  8. 8.

    Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey G (2019) Tibial slope and medial meniscectomy significantly influence short-term knee laxity following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27(11):3481–3489

    Article  Google Scholar 

  9. 9.

    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Jt Surg Br 76:745–749

    CAS  Article  Google Scholar 

  10. 10.

    Dejour H, Walch G, Deschamps G, Chambat P (2014) Arthrosis of the knee in chronic anterior laxity. Orthop Traumatol Surg Res 100:49–58

    CAS  Article  Google Scholar 

  11. 11.

    Grassi A, Dal Fabbro G, Di Paolo S, Stefanelli F, Macchiarola L, Lucidi GA, Zaffagnini S (2019) Medial and lateral meniscus have a different role in kinematics of the ACL-deficient knee: a systematic review. J ISAKOS 4(5):233–241

    Article  Google Scholar 

  12. 12.

    Grassi A, Di Paolo S, Lucidi GA, Macchiarola L, Raggi F, Zaffagnini S (2019) The contribution of partial meniscectomy to preoperative laxity and laxity after anatomic single-bundle anterior cruciate ligament reconstruction. In vivo kinematics with navigation. Am J Sports Med 47:3203–3211

    Article  Google Scholar 

  13. 13.

    Grassi A, Macchiarola L, Urrizola Barrientos F, Zicaro JP, Costa Paz M, Adravanti P, Dini F, Zaffagnini S (2019) Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case–control study. Am J Sports Med 47:285–295

    Article  Google Scholar 

  14. 14.

    Hardy A, Klouche S, Szarzynski P, Charpentier E, Beranger JS, Bauer T, Rousselin B, Judet O, Hardy P (2019) A threshold value of 3.5 mm of passive anterior tibial subluxation on MRI is highly specific for complete ACL tears. Knee Surg Sports Traumatol Arthrosc 27:885–892

    Article  Google Scholar 

  15. 15.

    Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163

    Article  Google Scholar 

  16. 16.

    Kvist J (2005) Sagittal tibial translation during exercises in the anterior cruciate ligament-deficient knee. Scand J Med Sci Sports 15:148–158

    Article  Google Scholar 

  17. 17.

    Kvist J, Gillquist J (2001) Anterior positioning of tibia during motion after anterior cruciate ligament injury. Med Sci Sports Exerc 33:1063–1072

    CAS  Article  Google Scholar 

  18. 18.

    Kvist J, Gillquist J (2001) Sagittal plane knee translation and electromyographic activity during closed and open kinetic chain exercises in anterior cruciate ligament-deficient patients and control subjects. Am J Sports Med 29:72–82

    CAS  Article  Google Scholar 

  19. 19.

    Li G, Rudy TW, Allen C, Sakane M, Woo SL (1998) Effect of combined axial compressive and anterior tibial loads on in situ forces in the anterior cruciate ligament: a porcine study. J Orthop Res 16:122–127

    CAS  Article  Google Scholar 

  20. 20.

    Lian J, Novaretti JV, Sheean AJ, Patel NK, Whaley S, Popchak A, Musahl V (2019) Static lateral tibial plateau subluxation predicts high-grade rotatory knee laxity in anterior cruciate ligament-deficient knees. Am J Sports Med 47:277–284

    Article  Google Scholar 

  21. 21.

    Marom N, Kleeblad LJ, Ling D, Nwachukwu BU, Marx RG, Potter HG, Pearle AD (2020) Pre-operative static anterior tibial translation assessed on MRI does not influence return to sport or satisfaction after anterior cruciate ligament reconstruction. HSSJ 16(suppl 2):475–481

    Article  Google Scholar 

  22. 22.

    McDonald LS, van der List JP, Jones KJ, Zuiderbaan HA, Nguyen JT, Potter HG, Pearle AD (2017) Passive anterior tibial subluxation in the setting of anterior cruciate ligament injuries: a comparative analysis of ligament-deficient states. Am J Sports Med 45:1537–1546

    Article  Google Scholar 

  23. 23.

    Mehl J, Otto A, Baldino JB, Achtnich A, Akoto R, Imhoff AB, Scheffler S, Petersen W (2019) The ACL-deficient knee and the prevalence of meniscus and cartilage lesions: a systematic review and meta-analysis (CRD42017076897). Arch Orthop Trauma Surg 139:819–841

    Article  Google Scholar 

  24. 24.

    Mishima S, Takahashi S, Kondo S, Ishiguro N (2005) Anterior tibial subluxation in anterior cruciate ligament-deficient knees: quantification using magnetic resonance imaging. Arthrosc J 21:1193–1196

    Article  Google Scholar 

  25. 25.

    Mitchell BC, Siow MY, Bastrom T, Bomar JD, Pennock AT, Parvaresh K, Edmonds EW (2021) Coronal lateral collateral ligament sign: a novel magnetic resonance imaging sign for identifying anterior cruciate ligament-deficient knees in adolescents and summarizing the extent of anterior tibial translation and femorotibial internal rotation. Am J Sports Med 49(4):928–934

    Article  Google Scholar 

  26. 26.

    Myers RH (1990) Classical and modern regression with applications. PWS-Kent Publishing Company, Boston

    Google Scholar 

  27. 27.

    Nishida K, Matsushita T, Araki D, Sasaki H, Tanaka T, Hoshino Y, Kanzaki N, Matsumoto T, Nagamune K, Niikura T, Kurosaka M, Kuroda R (2019) Analysis of anterior tibial subluxation to the femur at maximum extension in anterior cruciate ligament-deficient knees. J Orthop Surg (Hong Kong) 27:2309499019833606

    Article  Google Scholar 

  28. 28.

    Sigonney G, Klouche S, Chevance V, Bauer T, Rousselin B, Judet O, Hardy P (2020) Risk factors for passive anterior tibial subluxation on MRI in complete ACL tear. Orthop Traumatol Surg Res 106:465–468

    Article  Google Scholar 

  29. 29.

    Snoj Ž, Zupanc O, Stražar K, Salapura V (2017) A descriptive study of potential effect of anterior tibial translation, femoral tunnel and anterior cruciate ligament graft inclination on clinical outcome and degenerative changes. Int Orthop 41:789–796

    Article  Google Scholar 

  30. 30.

    Song G-Y, Zhang H, Zhang J, Liu X, Xue Z, Qian Y, Feng H (2018) Greater static anterior tibial subluxation of the lateral compartment after an acute anterior cruciate ligament injury is associated with an increased posterior tibial slope. Am J Sports Med 46:1617–1623

    Article  Google Scholar 

  31. 31.

    Tanaka MJ, Jones KJ, Gargiulo AM, Delos D, Wickiewicz TL, Potter HG, Pearle AD (2013) Passive anterior tibial subluxation in anterior cruciate ligament-deficient knees. Am J Sports Med 41:2347–2352

    Article  Google Scholar 

  32. 32.

    Tanaka Y, Kita K, Takao R, Amano H, Uchida R, Shiozaki Y, Yonetani Y, Kinugasa K, Mae T, Horibe S (2018) Chronicity of anterior cruciate ligament deficiency, part 2: radiographic predictors of early graft failure. Orthop J Sports Med 6:2325967117751915

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Tanaka Y, Kita K, Takao R, Amano H, Uchida R, Shiozaki Y, Yonetani Y, Kinugasa K, Mae T, Horibe S (2018) Chronicity of anterior cruciate ligament deficiency, part 1: effects on the tibiofemoral relationship before and immediately after anatomic ACL reconstruction with autologous hamstring grafts. Orthop J Sports Med 6:2325967117750813

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tashiro Y, Mori T, Kawano T, Oniduka T, Arner JW, Fu FH, Iwamoto Y (2020) Meniscal ramp lesions should be considered in anterior cruciate ligament-injured knees, especially with larger instability or longer delay before surgery. Knee Surg Sports Traumatol Arthrosc 28:3569–3575

    Article  Google Scholar 

  35. 35.

    Torzilli PA, Deng X, Warren RF (1994) The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am J Sports Med 22:105–112

    CAS  Article  Google Scholar 

  36. 36.

    Uffmann W, ElAttrache N, Nelson T, Eberlein SA, Wang J, Howard DR, Metzger MF (2021) Posterior lateral meniscal root tears increase strain on the reconstructed anterior cruciate ligament: a cadaveric study. Arthrosc Sports Med Rehabil 3(2):505–513

    Article  Google Scholar 

  37. 37.

    Vahey TN, Hunt JE, Shelbourne KD (1993) Anterior translocation of the tibia at MR imaging: a secondary sign of anterior cruciate ligament tear. Radiology 187:817–819

    CAS  Article  Google Scholar 

  38. 38.

    Wang CK, Lin LC, Sun YN, Lai CS, Chen CH, Kao CY (2021) Computer-assisted system in stress radiography for anterior cruciate ligament injury with correspondent evaluation of relevant diagnostic factors. Diagn (Basel, Switz) 11(3):419

    Google Scholar 

Download references


The authors would first like to thank the Department of Radiology from the Clinique d'Eich (Centre Hospitalier de Luxembourg) for their help in the standardization and execution of monopodal radiographs.


No funding was received for the present work.

Author information



Corresponding author

Correspondence to Romain Seil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedure performed in this study were in accordance with the ethical standards of the institutional committee and with the 1964 Helsinki declaration and its later amendments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macchiarola, L., Jacquet, C., Dor, J. et al. Side-to-side anterior tibial translation on monopodal weightbearing radiographs as a sign of knee decompensation in ACL-deficient knees. Knee Surg Sports Traumatol Arthrosc (2021).

Download citation


  • Anterior tibial translation
  • Weightbearing radiographs
  • ACL deficiency
  • Knee sagittal decompensation