Skip to main content

Graft isometry during anatomical ACL reconstruction has little effect on surgical outcomes

Abstract

Purpose

To investigate the surgical outcomes of anatomical anterior cruciate ligament (ACL) reconstruction according to the graft isometry measured during surgery.

Methods

Electrical medical records of patients who underwent an arthroscopic ACL reconstruction through the transportal technique using hamstring tendon autograft between 2012 and 2016 were retrospectively reviewed. The patients were classified into two groups based on the graft length change throughout the knee range of motion measured just before graft fixation (Group 1, graft length change ≤ 2 mm; Group 2, graft length change > 2 mm). Comparative analyses, including a non-inferiority trial, were performed regarding the clinical scores, knee laxity, and radiographic parameters between the groups.

Results

A total of 67 patients were included in the study. The total change in the length of ACL graft throughout the knee range of motion was 1.4 ± 0.4 mm in Group 1 (range, 0.2–2.0 mm), and 3.0 ± 0.7 mm in Group 2 (range, 2.2–5.0 mm). Group 1 showed a relatively high (proximal) femoral tunnel and shallow (anterior) tibial tunnel compared to Group 2 (P < 0.001 and P = 0.028, respectively), but there were no apparent differences in the macroscopic view. There were no statistically significant differences in the clinical outcomes between groups at 2 years after surgery, which satisfied the non-inferiority criterion of Group 1 in terms of clinical scores and knee laxity compared to Group 2.

Conclusion

The surgical outcomes of anatomical ACL reconstruction in patients with non-isometric ACL graft were not inferior in terms of clinical scores and knee laxity, compared to those with nearly-isometric ACL graft. The graft tunnel placement in the isometric position during anatomical ACL reconstruction, which is technically challenging in the clinical setting, is not a crucial factor in terms of clinical outcomes.

Level of evidence

Level IV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ACL:

Anterior cruciate ligament

VAS:

Visual analog scale

IKDC:

International Knee Documentation Committee

AP:

Anteroposterior

CT:

Computed tomography

MRI:

Magnetic resonance image

HKA:

Hip–knee–ankle

3D:

3-Dimensional

TR:

Repetition time

TE:

Echo time

SI:

Signal intensity

SNQ:

Signal-to-noise quotient

PCL:

Posterior cruciate ligament

MCID:

Minimal clinically important differences

ANOVA:

Analysis of variance

ICC:

Intra-class correlation coefficient

References

  1. Amis AA, Dawkins GP (1991) Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br 73:260–267

    CAS  PubMed  Article  Google Scholar 

  2. Amis AA, Zavras TD (1995) Isometricity and graft placement during anterior cruciate ligament reconstruction. Knee 2:5–17

    Article  Google Scholar 

  3. Bedi A, Musahl V, Steuber V, Kendoff D, Choi D, Allen AA et al (2011) Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy 27:380–390

    PubMed  Article  Google Scholar 

  4. Beynnon BD, Uh BS, Johnson RJ, Fleming BC, Renström PA, Nichols CE (2001) The elongation behavior of the anterior cruciate ligament graft in vivo. A long-term follow-up study. Am J Sports Med 29:161–166

    CAS  PubMed  Article  Google Scholar 

  5. Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR (2009) The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med 37:890–897

    PubMed  Article  Google Scholar 

  6. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85(A Suppl 2):58–69

    PubMed  Article  Google Scholar 

  7. Choi NH, Yang BS, Victoroff BN (2017) Clinical and radiological outcomes after hamstring anterior cruciate ligament reconstructions: comparison between fixed-loop and adjustable-loop cortical suspension devices. Am J Sports Med 45:826–831

    PubMed  Article  Google Scholar 

  8. Cooper DE, Small J, Urrea L (1998) Factors affecting graft excursion patterns in endoscopic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S20-24

    PubMed  Article  Google Scholar 

  9. Cox CL, Huston LJ, Dunn WR, Reinke EK, Nwosu SK, Parker RD et al (2014) Are articular cartilage lesions and meniscus tears predictive of IKDC, KOOS, and Marx activity level outcomes after anterior cruciate ligament reconstruction? A 6-year multicenter cohort study. Am J Sports Med 42:1058–1067

    PubMed  PubMed Central  Article  Google Scholar 

  10. Debandi A, Maeyama A, Hoshino Y, Asai S, Goto B, Smolinski P et al (2013) The effect of tunnel placement on rotational stability after ACL reconstruction: evaluation with use of triaxial accelerometry in a porcine model. Knee Surg Sports Traumatol Arthrosc 21:589–595

    PubMed  Article  Google Scholar 

  11. Duchman KR, Lynch TS, Spindler KP (2017) Graft selection in anterior cruciate ligament surgery: who gets what and why? Clin Sports Med 36:25–33

    PubMed  Article  Google Scholar 

  12. Firat A, Catma F, Tunc B, Hacihafizoglu C, Altay M, Bozkurt M et al (2014) The attic of the femoral tunnel in anterior cruciate ligament reconstruction: a comparison of outcomes of two suspensory femoral fixation systems. Knee Surg Sports Traumatol Arthrosc 22:1097–1105

    PubMed  Article  Google Scholar 

  13. Flandry F, Hunt JP, Terry GC, Hughston JC (1991) Analysis of subjective knee complaints using visual analog scales. Am J Sports Med 19:112–118

    CAS  PubMed  Article  Google Scholar 

  14. Hefti F, Müller W, Jakob RP, Stäubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234

    CAS  PubMed  Article  Google Scholar 

  15. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Neyret P, Richmond JC et al (2006) Responsiveness of the international knee documentation committee subjective knee form. Am J Sports Med 34:1567–1573

    PubMed  Article  Google Scholar 

  16. Iseki Y, Takahashi T, Takeda H, Tsuboi I, Imai H, Mashima N et al (2009) Defining the load bearing axis of the lower extremity obtained from anterior-posterior digital radiographs of the whole limb in stance. Osteoarthritis Cartilage 17:586–591

    CAS  PubMed  Article  Google Scholar 

  17. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Kim HS, Seon JK, Jo AR (2013) Current trends in anterior cruciate ligament reconstruction. Knee Surg Relat Res 25:165–173

    PubMed  PubMed Central  Article  Google Scholar 

  19. Kim SH, Kim SJ, Choi CH, Kim D, Jung M (2018) Optimal condition to create femoral tunnel considering combined influence of knee flexion and transverse drill angle in anatomical single-bundle ACL reconstruction using medial portal technique: 3D simulation study. Biomed Res Int 2018:2643247

    PubMed  PubMed Central  Google Scholar 

  20. Kim YK, Yoo JD, Kim SW, Park SH, Cho JH, Lim HM (2018) Intraoperative graft isometry in anatomic single-bundle anterior cruciate ligament reconstruction. Knee Surg Relat Res 30:115–120

    PubMed  PubMed Central  Article  Google Scholar 

  21. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36:1675–1687

    PubMed  Article  Google Scholar 

  22. Koo Y-J, Jung Y, Seon JK, Koo S (2020) Anatomical ACL reconstruction can restore the natural knee kinematics than isometric ACL reconstruction during the stance phase of walking. Int J Precis Eng Manuf 21:1127–1134

    Article  Google Scholar 

  23. Kurosawa H, Yamakoshi K, Yasuda K, Sasaki T (1991) Simultaneous measurement of changes in length of the cruciate ligaments during knee motion. Clin Orthop Relat Res 265:233–240

    Article  Google Scholar 

  24. Kwak SG, Kim JH (2017) Central limit theorem: the cornerstone of modern statistics. Korean J Anesthesiol 70:144–156

    PubMed  PubMed Central  Article  Google Scholar 

  25. Lee JS, Kim TH, Kang SY, Lee SH, Jung YB, Koo S et al (2012) How isometric are the anatomic femoral tunnel and the anterior tibial tunnel for anterior cruciate ligament reconstruction? Arthroscopy 28(1504–1512):1512.e1501–1502

    Google Scholar 

  26. Lim HC, Yoon YC, Wang JH, Bae JH (2012) Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability. Clin Orthop Surg 4:249–255

    PubMed  PubMed Central  Article  Google Scholar 

  27. Lubowitz JH (2014) Anatomic ACL reconstruction produces greater graft length change during knee range-of-motion than transtibial technique. Knee Surg Sports Traumatol Arthrosc 22:1190–1195

    PubMed  Article  Google Scholar 

  28. Mehta A, Lin CC, Campbell RA, Chin G, McGarry MH, Lee TQ et al (2019) Effects of Anteromedial Portal versus Transtibial ACL Tunnel Preparation on Contact Characteristics of the Graft and the Tibial Tunnel Aperture. Clin Orthop Surg 11:52–59

    PubMed  PubMed Central  Article  Google Scholar 

  29. Moon HS, Choi CH, Jung M, Lee DY, Chang H, Kim SH (2019) Do Rotation and measurement methods affect reliability of anterior cruciate ligament tunnel position on 3D reconstructed computed tomography? Orthop J Sports Med 7:2325967119885882

    PubMed  PubMed Central  Article  Google Scholar 

  30. Moon HS, Choi CH, Jung M, Lee DY, Eum KS, Kim SH (2020) Medial meniscal posterior horn tears are associated with increased posterior tibial slope: a case-control study. Am J Sports Med 48:1702–1710

    PubMed  Article  Google Scholar 

  31. Musahl V, Plakseychuk A, VanScyoc A, Sasaki T, Debski RE, McMahon PJ et al (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33:712–718

    PubMed  Article  Google Scholar 

  32. Myrer JW, Schulthies SS, Fellingham GW (1996) Relative and absolute reliability of the KT-2000 arthrometer for uninjured knees. Testing at 67, 89, 134, and 178 N and manual maximum forces. Am J Sports Med 24:104–108

    CAS  PubMed  Article  Google Scholar 

  33. O’Meara PM, O’Brien WR, Henning CE (1992) Anterior cruciate ligament reconstruction stability with continuous passive motion. The role of isometric graft placement. Clin Orthop Relat Res 277:201–209

    Article  Google Scholar 

  34. Palmer JE, Russell JP, Grieshober J, Iacangelo A, Ellison BA, Lease TD et al (2017) A biomechanical comparison of allograft tendons for ligament reconstruction. Am J Sports Med 45:701–707

    PubMed  Article  Google Scholar 

  35. Pearle AD, McAllister D, Howell SM (2015) Rationale for strategic graft placement in anterior cruciate ligament reconstruction: I.D.E.A.L Femoral Tunnel Position. Am J Orthop (Belle Mead NJ) 44:253–258

    Google Scholar 

  36. Pedersen M, Johnson JL, Grindem H, Magnusson K, Snyder-Mackler L, Risberg MA (2020) Meniscus or cartilage injury at the time of anterior cruciate ligament tear is associated with worse prognosis for patient-reported outcome 2 to 10 years after anterior cruciate ligament injury: a systematic review. J Orthop Sports Phys Ther 50:490–502

    PubMed  PubMed Central  Article  Google Scholar 

  37. Plaweski S, Cazal J, Rosell P, Merloz P (2006) Anterior cruciate ligament reconstruction using navigation: a comparative study on 60 patients. Am J Sports Med 34:542–552

    PubMed  Article  Google Scholar 

  38. Ro KH, Kim HJ, Lee DH (2018) The transportal technique shows better clinical results than the transtibial techniques for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:2371–2380

    PubMed  Article  Google Scholar 

  39. Smith JO, Yasen S, Risebury MJ, Wilson AJ (2014) Femoral and tibial tunnel positioning on graft isometry in anterior cruciate ligament reconstruction: a cadaveric study. J Orthop Surg (Hong Kong) 22:318–324

    Article  Google Scholar 

  40. Sommer C, Friederich NF, Müller W (2000) Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surg Sports Traumatol Arthrosc 8:207–213

    CAS  PubMed  Article  Google Scholar 

  41. Song GY, Hong L, Zhang H, Zhang J, Li Y, Feng H (2016) Clinical outcomes of combined lateral extra-articular tenodesis and intra-articular anterior cruciate ligament reconstruction in addressing high-grade pivot-shift phenomenon. Arthroscopy 32:898–905

    PubMed  Article  Google Scholar 

  42. Steiner ME, Battaglia TC, Heming JF, Rand JD, Festa A, Baria M (2009) Independent drilling outperforms conventional transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med 37:1912–1919

    PubMed  Article  Google Scholar 

  43. Sun K, Zhang J, Wang Y, Xia C, Zhang C, Yu T et al (2011) Arthroscopic reconstruction of the anterior cruciate ligament with hamstring tendon autograft and fresh-frozen allograft: a prospective, randomized controlled study. Am J Sports Med 39:1430–1438

    PubMed  Article  Google Scholar 

  44. Tashiro Y, Gale T, Sundaram V, Nagai K, Irrgang JJ, Anderst W et al (2017) The graft bending angle can affect early graft healing after anterior cruciate ligament reconstruction. in vivo analysis with 2 years’ follow-up. Am J Sports Med 45:1829–1836

    PubMed  Article  Google Scholar 

  45. Tejwani SG, Prentice HA, Wyatt RWB Jr, Maletis GB (2018) Femoral tunnel drilling method: risk of reoperation and revision after anterior cruciate ligament reconstruction. Am J Sports Med 46:3378–3384

    PubMed  Article  Google Scholar 

  46. Tibor L, Chan PH, Funahashi TT, Wyatt R, Maletis GB, Inacio MC (2016) Surgical technique trends in primary ACL Reconstruction from 2007 to 2014. J Bone Joint Surg Am 98:1079–1089

    PubMed  Article  Google Scholar 

  47. Tohyama H, Beynnon BD, Johnson RJ, Renström PA, Arms SW (1996) The effect of anterior cruciate ligament graft elongation at the time of implantation on the biomechanical behavior of the graft and knee. Am J Sports Med 24:608–614

    CAS  PubMed  Article  Google Scholar 

  48. Vascellari A, Grassi A, Canata GL, Zaffagnini S, Gokeler A, Jones H (2021) Hamstrings substitution via anteromedial portal with optional anterolateral ligament reconstruction is the preferred surgical technique for anterior cruciate ligament reconstruction: a survey among ESSKA members. Knee Surg Sports Traumatol Arthrosc 29:1120–1127

    PubMed  Article  Google Scholar 

  49. Wan F, Chen T, Ge Y, Zhang P, Chen S (2019) Effect of nearly isometric ACL reconstruction on graft-tunnel motion: a quantitative clinical study. Orthop J Sports Med 7:232596711989038

    Article  Google Scholar 

  50. Zavras TD, Race A, Bull AM, Amis AA (2001) A comparative study of “isometric” points for anterior cruciate ligament graft attachment. Knee Surg Sports Traumatol Arthrosc 9:28–33

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article. There were no external sources of funding and none of the authors had any conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

The project was coordinated by SHK. HSM and SHK generated the concept of the study. HSM drafted the manuscript, together with CHC, JHY, and MJ. The acquisition of data and analysis were done by THL and KBH. The design of the study and interpretation of data were all done jointly by all authors. HSM revised the final draft critically for important intellectual content and SHK approved the version to be submitted. All of authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Sung-Hwan Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was ethically approved by the institutional review board from Gangnam Severance hospital (ID Number: 4–2012-0068).

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 17 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moon, HS., Choi, CH., Yoo, JH. et al. Graft isometry during anatomical ACL reconstruction has little effect on surgical outcomes. Knee Surg Sports Traumatol Arthrosc 30, 1594–1604 (2022). https://doi.org/10.1007/s00167-021-06654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06654-0

Keywords

  • Anterior cruciate ligament
  • ACL
  • Anatomical ACL reconstruction
  • Graft isometry
  • Graft tunnel placement