Skip to main content

Advertisement

Log in

Modified triple Kessler with least risk of elongation among Achilles tendon repair techniques: a systematic review and network meta-analysis of human cadaveric studies

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Current treatment recommendations emphasize early loading, with preservation of tendon length and physiologic tension. The objective of this systematic review and network meta-analysis was to compare failure load and elongation after cyclic loading of Achilles tendon repair techniques at time-zero.

Methods

The databases PubMed, CENTRAL and Web of Science were searched for all published in-vitro studies comparing Achilles tendon repair techniques, or augmentation with autografts/biomaterials, and reports of failure load or elongation after cyclic loading. Only studies using human cadaveric Achilles tendons and matched pairs, or randomized specimen allocation, were selected for quantitative synthesis. A network meta-analysis per primary outcome was performed. Results were summarized as P score rankings and their validity was assessed using statistical methods.

Results

Sixteen studies, comprising 367 tendon repairs, were included. The following repair techniques were used (n = number of studies): Krackow (n = 8), Achillon (n = 4), double Krackow (n = 3), Bunnell (n = 3), Percutaneous Achilles Repair System (n = 3), Percutaneous Achilles Repair System Midsubstance (n = 2), Kessler (n = 3), double Kessler (n = 1), modified triple Kessler (n = 1), triple bundle (n = 1), a multifilament stainless steel cable-crimp technique (n = 1) and a double loop knot stitch (n = 1). Five studies assessed augmentation with autografts/biomaterials. Regarding the failure load, biomaterial augmented Krackow repairs occupied the first four positions in the ranking, followed by the multifilament stainless steel cable-crimp and Percutaneous Achilles Repair System Midsubstance techniques. Concerning elongation after cyclic loading, the triple Kessler was ranked first, followed by the Achillon and Percutaneous Achilles Repair System Midsubstance techniques. A negligible correlation between ranks was found (rs = 0.11; p = 0.75n.s.), meaning that a higher repair tensile strength is not necessarily related to improved performance in regard to avoidance of elongation.

Conclusion

In the failure load network meta-analysis, biomaterial augmented Krackow repairs ranked highest, but noticeable statistical heterogeneity was found. Regarding elongation with cyclic loading, the modified triple Kessler stitch showed the highest probability of ranking first.

Level of evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATR:

Achilles tendon rupture

MFSS:

Multifilament stainless steel

N:

Newtons

NMA:

Network meta-analysis

PARS:

Percutaneous Achilles Repair System

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

SUCRA:

Surface under the cumulative ranking curve

References

  1. Agres AN, Duda GN, Gehlen TJ, Arampatzis A, Taylor WR, Manegold S (2015) Increased unilateral tendon stiffness and its effect on gait 2–6 years after Achilles tendon rupture. Scand J Med Sci Sports 25:860–867

    Article  CAS  PubMed  Google Scholar 

  2. Assal M, Jung M, Stern R, Rippstein P, Delmi M, Hoffmeyer P (2002) Limited open repair of Achilles tendon ruptures: a technique with a new instrument and findings of a prospective multicenter study. J Bone Joint Surg Am 84:161–170

    Article  PubMed  Google Scholar 

  3. Aufwerber S, Edman G, Grävare Silbernagel K, Ackermann PW (2020) Changes in tendon elongation and muscle atrophy over time after Achilles tendon rupture repair: a prospective cohort study on the effects of early functional mobilization. Am J Sports Med 48:3296–3305

    Article  PubMed  Google Scholar 

  4. Barber FA, Herbert MA, Coons DA, Boothby MH (2006) Sutures and suture anchors—update 2006. Arthroscopy 22:1063-1069.e2

    Article  Google Scholar 

  5. Barber FA, McGarry JE, Herbert MA, Anderson RB (2008) A biomechanical study of Achilles tendon repair augmentation using GraftJacket matrix. Foot Ankle Int 29:329–333

    Article  PubMed  Google Scholar 

  6. Berlet GC, Hyer CF, Lee TH, Blum BE (2014) Collagen ribbon augmentation of Achilles tendon tears: a biomechanical evaluation. J Foot Ankle Surg 53:298–302

    Article  PubMed  Google Scholar 

  7. Bishop ME, Comer CD, Kane JM, Maltenfort MG, Raikin SM (2017) Open repair of acute Achilles tendon ruptures: is the incidence of clinically significant wound complications overestimated? Foot Ankle Orthop 2:2473011417699834

    Article  Google Scholar 

  8. Brorsson A, Willy RW, Tranberg R, Grävare Silbernagel K (2017) Heel-rise height deficit 1 year after Achilles tendon rupture relates to changes in ankle biomechanics 6 years after injury. Am J Sports Med 45:3060–3068

    Article  PubMed  Google Scholar 

  9. Cipriani A, Higgins JPT, Geddes JR, Salanti G (2013) Conceptual and technical challenges in network meta-analysis. Ann Intern Med 159:130–137

    Article  PubMed  Google Scholar 

  10. Clanton TO, Haytmanek CT, Williams BT, Civitarese DM, Turnbull TL, Massey MB, Wijdicks CA, LaPrade RF (2015) A biomechanical comparison of an open repair and 3 minimally invasive percutaneous achilles tendon repair techniques during a simulated, progressive rehabilitation protocol. Am J Sports Med 43:1957–1964

    Article  PubMed  Google Scholar 

  11. Cook KD, Clark G, Lui E, Vajaria G, Wallace GF (2010) Strength of braided polyblend polyethylene sutures versus braided polyester sutures in Achilles tendon repair: a cadaveric study. J Am Podiatr Med Assoc 100:185–188

    Article  PubMed  Google Scholar 

  12. Cottom JM, Baker JS, Richardson PE, Maker JM (2017) Evaluation of a new knotless suture anchor repair in acute Achilles tendon ruptures: a biomechanical comparison of three techniques. J Foot Ankle Surg 56:423–427

    Article  PubMed  Google Scholar 

  13. Davis WL, Singerman R, Labropoulos PA, Victoroff B (1999) Effect of ankle and knee position on tension in the Achilles tendon. Foot Ankle Int 20:126–131

    Article  PubMed  Google Scholar 

  14. Demetracopoulos CA, Gilbert SL, Young E, Baxter JR, Deland JT (2014) Limited-open Achilles tendon repair using locking sutures versus nonlocking sutures: an in vitro model. Foot Ankle Int 35:612–618

    Article  PubMed  Google Scholar 

  15. Deng S, Sun Z, Zhang C, Chen G, Li J (2017) Surgical treatment versus conservative management for acute Achilles tendon rupture: a systematic review and meta-analysis of randomized controlled trials. J Foot Ankle Surg 56:1236–1243

    Article  PubMed  Google Scholar 

  16. Dias S, Welton NJ, Caldwell DM, Ades AE (2010) Checking consistency in mixed treatment comparison meta-analysis. Stat Med 29:932–944

    Article  CAS  PubMed  Google Scholar 

  17. Diniz P, Pacheco J, Guerra-Pinto F, Pereira H, Ferreira FC, Kerkhoffs G (2020) Achilles tendon elongation after acute rupture: is it a problem? A systematic review. Knee Surg Sports Traumatol Arthrosc 28(12):4011–4030

    Article  PubMed  Google Scholar 

  18. Frosch S, Buchhorn G, Hawellek T, Walde TA, Lehmann W, Hubert J (2020) Comparison of the double loop knot stitch and Kessler stitch for Achilles tendon repair: A biomechanical cadaver study. PLoS ONE 15:e0243306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ganestam A, Kallemose T, Troelsen A, Barfod KW (2016) Increasing incidence of acute Achilles tendon rupture and a noticeable decline in surgical treatment from 1994 to 2013. A nationwide registry study of 33,160 patients. Knee Surg Sports Traumatol Arthrosc 24:3730–3737

    Article  PubMed  Google Scholar 

  20. Gebauer M, Beil FT, Beckmann J, Sárváry AM, Ueblacker P, Ruecker AH, Holste J, Meenen NM (2007) Mechanical evaluation of different techniques for Achilles tendon repair. Arch Orthop Trauma Surg 127:795–799

    Article  PubMed  Google Scholar 

  21. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C (2013) Assessing bias in studies of prognostic factors. Ann Intern Med 158:280–286

    Article  PubMed  Google Scholar 

  22. Heikkinen J, Lantto I, Piilonen J, Flinkkilä T, Ohtonen P, Siira P, Laine V, Niinimäki J, Pajala A, Leppilahti J (2017) Tendon length, calf muscle atrophy, and strength deficit after acute Achilles tendon rupture: long-term follow-up of patients in a previous study. J Bone Joint Surg Am 99:1509–1515

    Article  PubMed  Google Scholar 

  23. Heitman DE, Ng K, Crivello KM, Gallina J (2011) Biomechanical comparison of the Achillon tendon repair system and the Krackow locking loop technique. Foot Ankle Int 32:879–887

    Article  PubMed  Google Scholar 

  24. Herbort M, Haber A, Zantop T, Gosheger G, Rosslenbroich S, Raschke MJ, Petersen W (2008) Biomechanical comparison of the primary stability of suturing Achilles tendon rupture: a cadaver study of Bunnell and Kessler techniques under cyclic loading conditions. Arch Orthop Trauma Surg 128:1273–1277

    Article  PubMed  Google Scholar 

  25. Higgins JPT, Li T, Deeks JJ (2019) Chapter 6: choosing effect measures and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) Cochrane handbook systematic reviews of interventions version 6.1 (updated September 2020). Cochrane. Available from www.training.cochrane.org/handbook

  26. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) (2020) Cochrane handbook for systematic reviews of interventions version 6.1 (updated September 2020). Cochrane. Available from: www.training.cochrane.org/handbook

  27. von Hippel PT (2015) The heterogeneity statistic I2 can be biased in small meta-analyses. BMC Med Res Methodol. https://doi.org/10.1186/s12874-015-0024-z

    Article  Google Scholar 

  28. Huffard B, O’Loughlin PF, Wright T, Deland J, Kennedy JG (2008) Achilles tendon repair: Achillon system vs. Krackow suture: an anatomic in vitro biomechanical study. Clin Biomech 23:1158–1164

    Article  CAS  Google Scholar 

  29. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JPA, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784

    Article  PubMed  Google Scholar 

  30. Jaakkola JI, Hutton WC, Beskin JL, Lee GP (2000) Achilles tendon rupture repair: biomechanical comparison of the triple bundle technique versus the Krakow locking loop technique. Foot Ankle Int 21:14–17

    Article  CAS  PubMed  Google Scholar 

  31. Jandacka D, Silvernail JF, Uchytil J, Zahradnik D, Farana R, Hamill J (2017) Do athletes alter their running mechanics after an Achilles tendon rupture? J Foot Ankle Res. https://doi.org/10.1186/s13047-017-0235-0

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jordan MC, Boelch S, Jansen H, Meffert RH, Hoelscher-Doht S (2016) Does plastic suture deformation induce gapping after tendon repair? A biomechanical comparison of different suture materials. J Biomech 49:2607–2612

    Article  PubMed  Google Scholar 

  33. Kadakia AR, Dekker RG, Ho BS (2017) Acute Achilles tendon ruptures: an update on treatment. J Am Acad Orthop Surg 25:23–31

    Article  PubMed  Google Scholar 

  34. Kangas J, Pajala A, Ohtonen P, Leppilahti J (2007) Achilles tendon elongation after rupture repair: a randomized comparison of 2 postoperative regimens. Am J Sports Med 35:59–64

    Article  PubMed  Google Scholar 

  35. Kannus P, Józsa L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am 73:1507–1525

    Article  CAS  PubMed  Google Scholar 

  36. Krackow KA, Thomas SC, Jones LC (1988) Ligament-tendon fixation: analysis of a new stitch and comparison with standard techniques. Orthopedics 11:909–917

    Article  CAS  PubMed  Google Scholar 

  37. Krahn U, Binder H, König J (2013) A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol. https://doi.org/10.1186/1471-2288-13-35

    Article  PubMed  PubMed Central  Google Scholar 

  38. Krahn U, Binder H, König J (2014) Visualizing inconsistency in network meta-analysis by independent path decomposition. BMC Med Res Methodol. https://doi.org/10.1186/1471-2288-14-131

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lantto I, Heikkinen J, Flinkkilä T, Ohtonen P, Leppilahti J (2015) Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand J Med Sci Sports 25:e133-138

    Article  CAS  PubMed  Google Scholar 

  40. Lee SJ, Goldsmith S, Nicholas SJ, McHugh M, Kremenic I, Ben-Avi S (2008) Optimizing Achilles tendon repair: effect of epitendinous suture augmentation on the strength of Achilles tendon repairs. Foot Ankle Int 29:427–432

    Article  PubMed  Google Scholar 

  41. Leppilahti J, Puranen J, Orava S (1996) Incidence of Achilles tendon rupture. Acta Orthop Scand 67:277–279

    Article  CAS  PubMed  Google Scholar 

  42. Li T, Puhan MA, Vedula SS, Singh S, Dickersin K, The Ad Hoc Network Meta-analysis Methods Meeting Working Group (2011) Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. https://doi.org/10.1186/1741-7015-9-79

    Article  PubMed  PubMed Central  Google Scholar 

  43. Longo UG, Lamberti A, Maffulli N, Denaro V (2010) Tendon augmentation grafts: a systematic review. Br Med Bull 94:165–188

    Article  PubMed  Google Scholar 

  44. Lumley T (2002) Network meta-analysis for indirect treatment comparisons. Stat Med 21:2313–2324

    Article  PubMed  Google Scholar 

  45. Maffulli N, Waterston SW, Squair J, Reaper J, Douglas AS (1999) Changing incidence of Achilles tendon rupture in Scotland: a 15-year study. Clin J Sport Med 9:157–160

    Article  CAS  PubMed  Google Scholar 

  46. Magnussen RA, Glisson RR, Moorman CT (2011) Augmentation of Achilles tendon repair with extracellular matrix xenograft: a biomechanical analysis. Am J Sports Med 39:1522–1527

    Article  PubMed  Google Scholar 

  47. Manegold S, Tsitsilonis S, Gehlen T, Kopf S, Duda GN, Agres AN (2018) Alterations in structure of the muscle-tendon unit and gait pattern after percutaneous repair of Achilles tendon rupture with the Dresden instrument. Foot Ankle Surg 25(4):529–533

    Article  PubMed  Google Scholar 

  48. Maquirriain J (2011) Achilles tendon rupture: avoiding tendon lengthening during surgical repair and rehabilitation. Yale J Biol Med 84:289–300

    PubMed  PubMed Central  Google Scholar 

  49. Mccomis GP, Nawoczenski DA, Dehaven KE (1997) Functional bracing for rupture of the Achilles tendon. Clinical results and analysis of ground-reaction forces and temporal data. J Bone Joint Surg Am 79:1799–1808

    Article  CAS  PubMed  Google Scholar 

  50. McCoy BW, Haddad SL (2010) The strength of achilles tendon repair: a comparison of three suture techniques in human cadaver tendons. Foot Ankle Int 31:701–705

    Article  PubMed  Google Scholar 

  51. Mezzarobba S, Bortolato S, Giacomazzi A, Fancellu G, Marcovich R, Valentini R (2012) Percutaneous repair of Achilles tendon ruptures with Tenolig: quantitative analysis of postural control and gait pattern. Foot 22:303–309

    Article  CAS  PubMed  Google Scholar 

  52. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

  53. Mortensen NH, Saether J, Steinke MS, Staehr H, Mikkelsen SS (1992) Separation of tendon ends after Achilles tendon repair: a prospective, randomized, multicenter study. Orthopedics 15:899–903

    Article  CAS  PubMed  Google Scholar 

  54. Nguyen TP, Keyt LK, Herfat S, Gordon L, Palanca A (2020) Biomechanical study of a multifilament stainless steel cable crimp system versus a multistrand ultra-high molecular weight polyethylene polyester suture Krackow technique for Achilles tendon rupture repair. J Foot Ankle Surg 59:86–90

    Article  PubMed  Google Scholar 

  55. Norman GR, Sloan JA, Wyrwich KW (2003) Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care 41:582–592

    Article  PubMed  Google Scholar 

  56. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev. https://doi.org/10.1186/s13643-016-0384-4

    Article  PubMed  PubMed Central  Google Scholar 

  57. Powell HC, Silbernagel KG, Brorsson A, Tranberg R, Willy RW (2018) Individuals post Achilles tendon rupture exhibit asymmetrical knee and ankle kinetics and loading rates during a drop countermovement jump. J Orthop Sports Phys Ther 48:34–43

    Article  PubMed  Google Scholar 

  58. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  59. Rawson S, Cartmell S, Wong J (2013) Suture techniques for tendon repair; a comparative review. Muscles Ligaments Tendons J 3:220–228

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rücker G (2012) Network meta-analysis, electrical networks and graph theory. Res Synth Methods 3:312–324

    Article  PubMed  Google Scholar 

  61. Rücker G, Krahn U, König J, Efthimiou O, Schwarzer G (2020) netmeta: network meta-analysis using frequentist methods. R package version 1.3-0. https://CRAN.R-project.org/package=netmeta

  62. Rücker G, Schwarzer G (2015) Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol. https://doi.org/10.1186/s12874-015-0060-8

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sadoghi P, Rosso C, Valderrabano V, Leithner A, Vavken P (2012) Initial Achilles tendon repair strength—synthesized biomechanical data from 196 cadaver repairs. Int Orthop 36:1947–1951

    Article  PubMed  PubMed Central  Google Scholar 

  64. Salanti G, Ades AE, Ioannidis JPA (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171

    Article  PubMed  Google Scholar 

  65. Salanti G, Giovane CD, Chaimani A, Caldwell DM, Higgins JPT (2014) Evaluating the quality of evidence from a network meta-analysis. PLOS One 9:e99682

  66. Schepull T, Kvist J, Andersson C, Aspenberg P (2007) Mechanical properties during healing of Achilles tendon ruptures to predict final outcome: a pilot Roentgen stereophotogrammetric analysis in 10 patients. BMC Musculoskelet Disord. https://doi.org/10.1186/1471-2474-8-116

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schepull T, Kvist J, Aspenberg P (2012) Early E-modulus of healing Achilles tendons correlates with late function: similar results with or without surgery. Scand J Med Sci Sports 22:18–23

    Article  CAS  PubMed  Google Scholar 

  68. Sherman SL (2018) Editorial commentary: the Krackow Stitch: more than 30 years of tendon repair and still holding strong. Arthroscopy 34:669–670

    Article  PubMed  Google Scholar 

  69. Sheth U, Wasserstein D, Jenkinson R, Moineddin R, Kreder H, Jaglal SB (2017) The epidemiology and trends in management of acute Achilles tendon ruptures in Ontario, Canada: a population-based study of 27607 patients. Bone Joint J 99B:78–86

    Article  Google Scholar 

  70. Shim SR, Kim S-J, Lee J, Rücker G (2019) Network meta-analysis: application and practice using R software. Epidemiol Health 41:e2019013

  71. Soroceanu A, Sidhwa F, Aarabi S, Kaufman A, Glazebrook M (2012) Surgical versus nonsurgical treatment of acute Achilles tendon rupture: a meta-analysis of randomized trials. J Bone Joint Surg Am 94:2136–2143

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tengman T, Riad J (2013) Three-dimensional gait analysis following achilles tendon rupture with nonsurgical treatment reveals long-term deficiencies in muscle strength and function. Orthop J Sports Med 1:2325967113504734

    Article  PubMed  PubMed Central  Google Scholar 

  73. Troop RL, Losse GM, Lane JG, Robertson DB, Hastings PS, Howard ME (1995) Early motion after repair of Achilles tendon ruptures. Foot Ankle Int 16:705–709

    Article  CAS  PubMed  Google Scholar 

  74. Valkering KP, Aufwerber S, Ranuccio F, Lunini E, Edman G, Ackermann PW (2017) Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 25:1807–1816

    Article  PubMed  Google Scholar 

  75. Van Dyke RO, Chaudhary SA, Gould G, Trimba R, Laughlin RT (2017) Biomechanical head-to-head comparison of 2 sutures and the giftbox versus Bunnell techniques for midsubstance achilles tendon ruptures. Orthop J Sports Med 5:232596711770747

    Article  Google Scholar 

  76. Willy RW, Brorsson A, Powell HC, Willson JD, Tranberg R, Grävare Silbernagel K (2017) Elevated knee joint kinetics and reduced ankle kinetics are present during jogging and hopping after achilles tendon ruptures. Am J Sports Med 45:1124–1133

    Article  PubMed  Google Scholar 

  77. Wisbeck JM, Parks BG, Schon LC (2012) Xenograft scaffold full-wrap reinforcement of Krackow achilles tendon repair. Orthopedics 35:e331-334

    Article  PubMed  Google Scholar 

  78. Wu Y, Mu Y, Yin L, Wang Z, Liu W, Wan H (2019) Complications in the management of acute achilles tendon rupture: a systematic review and network meta-analysis of 2060 patients. Am J Sports Med 47:2251–2260

    Article  PubMed  Google Scholar 

  79. Wüst DM, Meyer DC, Favre P, Gerber C (2006) Mechanical and handling properties of braided polyblend polyethylene sutures in comparison to braided polyester and monofilament polydioxanone sutures. Arthroscopy 22:1146–1153

    Article  PubMed  Google Scholar 

  80. Yammine K, Assi C (2017) Efficacy of repair techniques of the Achilles tendon: a meta-analysis of human cadaveric biomechanical studies. Foot 30:13–20

    Article  PubMed  Google Scholar 

  81. Zellers JA, Cortes DH, Pohlig RT, Silbernagel KG (2019) Tendon morphology and mechanical properties assessed by ultrasound show change early in recovery and potential prognostic ability for 6-month outcomes. Knee Surg Sports Traumatol Arthrosc 27(9):2831–2839

    Article  PubMed  Google Scholar 

  82. Zhao J-G, Meng X-H, Liu L, Zeng X-T, Kan S-L (2017) Early functional rehabilitation versus traditional immobilization for surgical Achilles tendon repair after acute rupture: a systematic review of overlapping meta-analyses. Sci Rep. https://doi.org/10.1038/srep39871

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia (FCT-MEC), Portugal, through the research unit iBB [UIDB/04565/2020].

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PD designed the systematic review protocol, screened and selected studies, extracted and analyzed data, performed network meta-analysis and drafted the manuscript. JP screened and selected studies and extracted data. RMF designed the systematic review protocol, provided guidance in the quantitative synthesis and revised the manuscript. HP and FCF revised the manuscript. GK designed the systematic review protocol, supervised the selection of studies and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pedro Diniz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, P., Pacheco, J., Fernandes, R.M. et al. Modified triple Kessler with least risk of elongation among Achilles tendon repair techniques: a systematic review and network meta-analysis of human cadaveric studies. Knee Surg Sports Traumatol Arthrosc 31, 1644–1657 (2023). https://doi.org/10.1007/s00167-021-06613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06613-9

Keywords

Navigation