Skip to main content

No differences in clinical outcome between CMI and Actifit meniscal scaffolds: a systematic review and meta-analysis

Abstract

Purpose

To compare the results of two meniscal scaffolds, CMI and Actifit, for the treatment of partial meniscal lesions.

Methods

A systematic review was performed on the PubMed, Web of Science, Scopus, Embase, and Cochrane databases in January 2021, including randomized controlled trails (RCTs) and prospective and retrospective observational studies on the clinical results of meniscal scaffolds. A meta-analysis of the clinical results was performed; the rate of failures was recorded, as well as radiological results. The quality of the included studies was assessed with a modified Coleman Methodology Score (CMS).

Results

The search identified 37 studies (31 in the last 10 years): 2 RCTs, 5 comparative studies, 26 prospective and 4 retrospective series on a total of 1276 patients (472 CMI, 804 Actifit). The quality of evidence was generally low. An overall significant improvement in all clinical scores was documented for both scaffolds. The meta-analysis showed no differences between the two scaffolds in terms of patient reported outcome measures and activity level. The meta-analysis on the risk of failures documented a risk of failures of 7% in the CMI and of 9% in the Actifit group.

Conclusions

There is a growing interest on the results of meniscal scaffolds, with most studies published recently. However, long-term data on the Actifit scaffold and high-level comparative studies are missing. Both CMI and Actifit offered good clinical results with a significant and comparable improvement in symptoms and function, and with a low number of failures over time. Accordingly, with the proper indication, their use may be encouraged in the clinical practice.

Level of evidence

Level IV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abrams GD, Frank RM, Gupta AK, Harris JD, McCormick FM, Cole BJ (2013) Trends in meniscus repair and meniscectomy in the United States, 2005–2011. Am J Sports Med 41:2333–2339

    PubMed  Google Scholar 

  2. Akkaya M, Gursoy S, Ozberk N, Simsek ME, Korkusuz F, Bozkurt M (2020) Muscle strength but not balance improves after arthroscopic biodegradable polyurethane meniscus scaffold application. MusculoskeletSurg. https://doi.org/10.1007/s12306-020-00681-9

    Article  Google Scholar 

  3. Akkaya M, Simsek ME, Gursoy S, Cay N, Bozkurt M (2020) Medial meniscus scaffold implantation in combination with concentrated bone marrow aspirate injection: minimum 3-year follow-up. J Knee Surg 33:838–846

    PubMed  Google Scholar 

  4. Baratz ME, Fu FH, Mengato R (1986) Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med 14:270–275

    CAS  PubMed  Google Scholar 

  5. Baynat C, Andro C, Vincent JP, Schiele P, Buisson P, Dubrana F et al (2014) Actifit synthetic meniscal substitute: experience with 18 patients in Brest, France. OrthopTraumatolSurg Res 100:S385-389

    CAS  Google Scholar 

  6. Bouyarmane H, Beaufils P, Pujol N, Bellemans J, Roberts S, Spalding T et al (2014) Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. OrthopTraumatolSurg Res 100:153–157

    CAS  Google Scholar 

  7. Bulgheroni E, Grassi A, Bulgheroni P, MarcheggianiMuccioli GM, Zaffagnini S, Marcacci M (2015) Long-term outcomes of medial CMI implant versus partial medial meniscectomy in patients with concomitant ACL reconstruction. Knee Surg Sports TraumatolArthrosc 23:3221–3227

    Google Scholar 

  8. Bulgheroni E, Grassi A, Campagnolo M, Bulgheroni P, Mudhigere A, Gobbi A (2016) Comparative study of collagen versus synthetic-based meniscal scaffolds in treating meniscal deficiency in young active population. Cartilage 7:29–38

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bulgheroni P, Bulgheroni E, Regazzola G, Mazzola C (2013) Polyurethane scaffold for the treatment of partial meniscal tears. Clinical results with a minimum two-year follow-up. Joints 1:161–166

    PubMed  Google Scholar 

  10. Bulgheroni P, Murena L, Ratti C, Bulgheroni E, Ronga M, Cherubino P (2010) Follow-up of collagen meniscus implant patients: clinical, radiological, and magnetic resonance imaging results at 5 years. Knee 17:224–229

    PubMed  Google Scholar 

  11. Condello V, Dei Giudici L, Perdisa F, Screpis DU, Guerriero M, Filardo G et al (2019) Polyurethane scaffold implants for partial meniscus lesions: delayed intervention leads to an inferior outcome. Knee Surg Sports TraumatolArthrosc. https://doi.org/10.1007/s00167-019-05760-4

    Article  Google Scholar 

  12. De Coninck T, Huysse W, Willemot L, Verdonk R, Verstraete K, Verdonk P (2013) Two-year follow-up study on clinical and radiological outcomes of polyurethane meniscal scaffolds. Am J Sports Med 41:64–72

    PubMed  Google Scholar 

  13. Dhollander A, Verdonk P, Verdonk R (2016) Treatment of painful, irreparable partial meniscal defects with a polyurethane scaffold: midterm clinical outcomes and survival analysis. Am J Sports Med 44:2615–2621

    PubMed  Google Scholar 

  14. Efe T, Getgood A, Schofer MD, Fuchs-Winkelmann S, Mann D, Paletta JR et al (2012) The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency. Knee Surg Sports TraumatolArthrosc 20:1822–1830

    Google Scholar 

  15. Elattar M, Dhollander A, Verdonk R, Almqvist KF, Verdonk P (2011) Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports TraumatolArthrosc 19:147–157

    Google Scholar 

  16. Faivre B, Bouyarmane H, Lonjon G, Boisrenoult P, Pujol N, Beaufils P (2015) Actifit(R) scaffold implantation: influence of preoperative meniscal extrusion on morphological and clinical outcomes. OrthopTraumatolSurg Res 101:703–708

    CAS  Google Scholar 

  17. Fauno P, Nielsen AB (1992) Arthroscopic partial meniscectomy: a long-term follow-up. Arthroscopy 8:345–349

    CAS  PubMed  Google Scholar 

  18. Filardo G, Andriolo L, Balboni F, Marcacci M, Kon E (2015) Cartilage failures. Systematic literature review, critical survey analysis, and definition. Knee Surg Sports TraumatolArthrosc 23:3660–3669

    Google Scholar 

  19. Filardo G, Andriolo L, Kon E, de Caro F, Marcacci M (2015) Meniscal scaffolds: results and indications. A systematic literature review. IntOrthop 39:35–46

    Google Scholar 

  20. Filardo G, Kon E, Perdisa F, Sessa A, Di Martino A, Busacca M et al (2017) Polyurethane-based cell-free scaffold for the treatment of painful partial meniscus loss. Knee Surg Sports TraumatolArthrosc 25:459–467

    CAS  Google Scholar 

  21. Gelber PE, Isart A, Erquicia JI, Pelfort X, Tey-Pons M, Monllau JC (2015) Partial meniscus substitution with a polyurethane scaffold does not improve outcome after an open-wedge high tibial osteotomy. Knee Surg Sports TraumatolArthrosc 23:334–339

    Google Scholar 

  22. Gelber PE, Petrica AM, Isart A, Mari-Molina R, Monllau JC (2015) The magnetic resonance aspect of a polyurethane meniscal scaffold is worse in advanced cartilage defects without deterioration of clinical outcomes after a minimum two-year follow-up. Knee 22:389–394

    PubMed  Google Scholar 

  23. Gelber PE, Torres-Claramunt R, Poggioli F, Perez-Prieto D, Monllau JC (2020) Polyurethane meniscal scaffold: does preoperative remnant meniscal extrusion have an influence on postoperative extrusion and knee function? J Knee Surg. https://doi.org/10.1055/s-0040-1710377

    Article  PubMed  Google Scholar 

  24. Gomoll AH, Filardo G, Almqvist FK, Bugbee WD, Jelic M, Monllau JC et al (2012) Surgical treatment for early osteoarthritis. Part II: allografts and concurrent procedures. Knee Surg Sports TraumatolArthrosc 20:468–486

    CAS  Google Scholar 

  25. Haspl M, Trsek D, Lovric D, Strahonja B, Matokovic D (2020) Functional and magnetic resonance imaging outcome after polyurethane meniscal scaffold implantation following partial meniscectomy. IntOrthop. https://doi.org/10.1007/s00264-020-04844-y

    Article  Google Scholar 

  26. Hede A, Larsen E, Sandberg H (1992) Partial versus total meniscectomy. A prospective, randomised study with long-term follow-up. J Bone JtSurg Br 74:118–121

    CAS  Google Scholar 

  27. Higgins JPT (2011) Chapter 7: selecting studies and collecting data. In: Higgins JPT (ed) Cochrane handbook for systematic reviews of interventions

  28. Higuchi H, Kimura M, Shirakura K, Terauchi M, Takagishi K (2000) Factors affecting long-term results after arthroscopic partial meniscectomy. ClinOrthopRelat Res 377:161–168

    Google Scholar 

  29. Hirschmann A, Schiapparelli FF, Schenk L, Keller L, Amsler F, Hirschmann MT (2017) The Genovese grading scale is not reliable for MR assessment of collagen meniscus implants. Knee 24:9–15

    CAS  PubMed  Google Scholar 

  30. Hirschmann MT, Keller L, Hirschmann A, Schenk L, Berbig R, Luthi U et al (2013) One-year clinical and MR imaging outcome after partial meniscal replacement in stabilized knees using a collagen meniscus implant. Knee Surg Sports TraumatolArthrosc 21:740–747

    CAS  Google Scholar 

  31. Houck DA, Kraeutler MJ, Belk JW, McCarty EC, Bravman JT (2018) Similar clinical outcomes following collagen or polyurethane meniscal scaffold implantation: a systematic review. Knee Surg Sports TraumatolArthrosc 26:2259–2269

    Google Scholar 

  32. Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, MarchesiniReggiani L et al (2012) Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A 18:1573–1582

    CAS  PubMed  Google Scholar 

  33. Kon E, Filardo G, Zaffagnini S, Di Martino A, Di Matteo B, MarcheggianiMuccioli GM et al (2014) Biodegradable polyurethane meniscal scaffold for isolated partial lesions or as combined procedure for knees with multiple comorbidities: clinical results at 2 years. Knee Surg Sports TraumatolArthrosc 22:128–134

    Google Scholar 

  34. Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G et al (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(Suppl 1):156S-166S

    PubMed  Google Scholar 

  35. Lee SJ, Aadalen KJ, Malaviya P, Lorenz EP, Hayden JK, Farr J et al (2006) Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 34:1334–1344

    PubMed  Google Scholar 

  36. Leroy A, Beaufils P, Faivre B, Steltzlen C, Boisrenoult P, Pujol N (2017) Actifit((R)) polyurethane meniscal scaffold: MRI and functional outcomes after a minimum follow-up of 5 years. OrthopTraumatolSurg Res 103:609–614

    CAS  Google Scholar 

  37. Linke RD, Ulmer M, Imhoff AB (2007) Replacement of the meniscus with a collagen implant (CMI). Eur J Trauma EmergSurg 33:435–440

    Google Scholar 

  38. Lyman S, Hidaka C, Valdez AS, Hetsroni I, Pan TJ, Do H et al (2013) Risk factors for meniscectomy after meniscal repair. Am J Sports Med 41:2772–2778

    PubMed  Google Scholar 

  39. Martin-Hernandez C, Ranera-Garcia M, Diaz-Martinez JV, Muniesa-Herrero MP, Floria-Arnal LJ, Osca-Guadalajara M et al (2015) Results of polyurethane implant for persistent knee pain after partial meniscectomy with a minimum of two years follow-up. Rev Esp Cir OrtopTraumatol 59:44–51

    CAS  Google Scholar 

  40. Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R, Hinarejos P et al (2011) Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy 27:933–943

    PubMed  Google Scholar 

  41. Monllau JC, Poggioli F, Erquicia J, Ramirez E, Pelfort X, Gelber P et al (2018) Magnetic resonance imaging and functional outcomes after a polyurethane meniscal scaffold implantation: minimum 5-year follow-up. Arthroscopy 34:1621–1627

    PubMed  Google Scholar 

  42. Olivos-Meza A, Perez Jimenez FJ, Granados-Montiel J, Landa-Solis C, Cortes Gonzalez S, Jimenez Aroche CA et al (2019) First clinical application of polyurethane meniscal scaffolds with mesenchymal stem cells and assessment of cartilage quality with T2 mapping at 12 months. Cartilage. https://doi.org/10.1177/19476035198524151947603519852415

    Article  PubMed  PubMed Central  Google Scholar 

  43. Papalia R, Franceschi F, Diaz Balzani L, D’Adamio S, Maffulli N, Denaro V (2013) Scaffolds for partial meniscal replacement: an updated systematic review. Br Med Bull 107:19–40

    PubMed  Google Scholar 

  44. Reguzzoni M, Manelli A, Ronga M, Raspanti M, Grassi FA (2005) Histology and ultrastructure of a tissue-engineered collagen meniscus before and after implantation. J Biomed Mater Res B ApplBiomater 74:808–816

    Google Scholar 

  45. Rodkey WG, DeHaven KE, Montgomery WH 3rd, Baker CL Jr, Beck CL Jr, Hormel SE et al (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone JtSurg Am 90:1413–1426

    Google Scholar 

  46. Rodkey WG, Steadman JR, Li ST (1999) A clinical study of collagen meniscus implants to restore the injured meniscus. ClinOrthopRelat Res 367:S281–S292

    Google Scholar 

  47. Ronga M, Bulgheroni P, Manelli A, Genovese E, Grassi F, Cherubino P (2003) Short-term evaluation of collagen meniscus implants by MRI and morphological analysis. J OrthopTraumatol 4:5–10

    Google Scholar 

  48. Schuttler KF, Haberhauer F, Gesslein M, Heyse TJ, Figiel J, Lorbach O et al (2016) Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports TraumatolArthrosc 24:1478–1484

    Google Scholar 

  49. Schuttler KF, Pottgen S, Getgood A, Rominger MB, Fuchs-Winkelmann S, Roessler PP et al (2015) Improvement in outcomes after implantation of a novel polyurethane meniscal scaffold for the treatment of medial meniscus deficiency. Knee Surg Sports TraumatolArthrosc 23:1929–1935

    Google Scholar 

  50. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647

    PubMed  Google Scholar 

  51. Spencer SJ, Saithna A, Carmont MR, Dhillon MS, Thompson P, Spalding T (2012) Meniscal scaffolds: early experience and review of the literature. Knee 19:760–765

    CAS  PubMed  Google Scholar 

  52. Steadman JR, Rodkey WG (2005) Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy 21:515–525

    PubMed  Google Scholar 

  53. Stone KR, Steadman JR, Rodkey WG, Li ST (1997) Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone JtSurg Am 79:1770–1777

    CAS  Google Scholar 

  54. TestaPezzin AP, Cardoso TP, Rincon MCDA, Zavaglia CADC, Duek EDA (2003) Bioreabsorbable polymer scaffold as temporary meniscal prosthesis. Artif Organs 27:428–431

    Google Scholar 

  55. Toanen C, Dhollander A, Bulgheroni P, Filardo G, Zaffagnini S, Spalding T et al (2020) Polyurethane meniscal scaffold for the treatment of partial meniscal deficiency: 5-year follow-up outcomes: a European Multicentric Study. Am J Sports Med 48:1347–1355

    PubMed  Google Scholar 

  56. Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W et al (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40:844–853

    PubMed  Google Scholar 

  57. Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL (2011) Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 39:774–782

    PubMed  Google Scholar 

  58. Verdonk R, Volpi P, Verdonk P, Van der Bracht H, Van Laer M, Almqvist KF et al (2013) Indications and limits of meniscal allografts. Injury 44(Suppl 1):S21-27

    PubMed  Google Scholar 

  59. Zaffagnini S, Giordano G, Vascellari A, Bruni D, Neri MP, Iacono F et al (2007) Arthroscopic collagen meniscus implant results at 6 to 8 years follow up. Knee Surg Sports TraumatolArthrosc 15:175–183

    Google Scholar 

  60. Zaffagnini S, Grassi A, MarcheggianiMuccioli GM, Bonanzinga T, Nitri M, Raggi F et al (2015) MRI evaluation of a collagen meniscus implant: a systematic review. Knee Surg Sports TraumatolArthrosc 23:3228–3237

    Google Scholar 

  61. Zaffagnini S, Grassi A, MarcheggianiMuccioli GM, Holsten D, Bulgheroni P, Monllau JC et al (2015) Two-year clinical results of lateral collagen meniscus implant: a multicenter study. Arthroscopy 31:1269–1278

    PubMed  Google Scholar 

  62. Zaffagnini S, MarcheggianiMuccioli GM, Bulgheroni P, Bulgheroni E, Grassi A, Bonanzinga T et al (2012) Arthroscopic collagen meniscus implantation for partial lateral meniscal defects: a 2-year minimum follow-up study. Am J Sports Med 40:2281–2288

    PubMed  Google Scholar 

  63. Zaffagnini S, MarcheggianiMuccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G et al (2011) Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am J Sports Med 39:977–985

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DR participated in literature review, data collection, figures editing, and manuscript writing. DP participated in literature review, data collection, and statistical analysis. LA participated in data collection, figures editing and manuscript editing. AG participated in manuscript writing and editing. CC participated in study design and manuscript editing. SZ participated in study design and manuscript editing. GF participated in study design and manuscript editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Davide Reale or Luca Andriolo.

Ethics declarations

Conflict of interest

Stefano Zaffagnini has potential conflict of interest. He has received institutional support outside the present work from Fidia Farmaceutici, Cartiheal, IGEA Clinical Biophysics, Biomet and Kensey Nash. He has received grant support outside the present work from I + and royalties from Springer. Christian Candrian has received institutional support outside the present work from Medacta International SA, Johnson & Johnson, Lima Corporate, Zimmer Biomet, and Oped AG. Other Authors declare that they have no potential conflict of interest.

Funding

There was no financial conflict of interest with regards to this study.

Ethical approval

Ethical approval was not required as this is a pure meta-analysis of the literature not involving humans nor animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reale, D., Previtali, D., Andriolo, L. et al. No differences in clinical outcome between CMI and Actifit meniscal scaffolds: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 30, 328–348 (2022). https://doi.org/10.1007/s00167-021-06548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06548-1

Keywords

  • Meniscus
  • Scaffold
  • CMI
  • Actifit
  • Knee
  • Implant