Skip to main content
Log in

Steep posterior lateral tibial slope, bone contusion on lateral compartments and combined medial collateral ligament injury are associated with the increased risk of lateral meniscal tear

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To determine the risk factors for lateral meniscus and root tears in patients with acute anterior cruciate ligament (ACL) injuries.

Methods

A total of 226 patients undergoing acute ACL reconstruction were included in the study sample. Exclusion criteria were revisions, fractures, chronic cases, and multiple ligament injuries, with the exception of medial collateral ligament (MCL) injuries. The patients were divided into groups based on the presence of lateral meniscus and root tears by arthroscopy. Binary logistic regression was used to analyze risk factors including age, sex, body mass index (BMI), injury mechanism (contact/non-contact), Segond fracture, side-to-side laxity, location of bone contusion, medial and lateral tibial and meniscal slope, mechanical axis angle, and grade of pivot shift.

Results

Overall lateral meniscus (LM) tears were identified in 97 patients (42.9%), and LM root tears were found in 22 patients (9.7%). The risk of an LM tear in ACL-injured knees increased with bone contusion on LTP (odds ratio [OR], 3.5; 95% confidence interval [CI] 1.419–8.634; P = 0.007), steeper lateral tibial slope (OR, 1.133; 95% CI 1.003–1.28; P = 0.045), MCL injury (OR, 2.618; 95% CI 1.444–4.746; P = 0.002), and non-contact injury mechanism (OR, 3.132; 95% CI 1.446–6.785; P = 0.004) in logistic regression analysis. The risk of LM root tear in ACL-injured knees increased with high-grade pivot shift (OR, 9.127; 95% CI 2.821–29.525; P = 0.000) and steeper lateral tibial slope (OR, 1.293; 95% CI 1.061–1.576; P = 0.011).

Conclusion

The increased risk of LM lesions in acute ACL-injured knees should be considered if significant risk factors including bone contusion on lateral compartments, MCL injury, and a steeper lateral tibial slope are present. Moreover, high-grade rotational injury with steeper lateral tibial slope are also significant risk factors for LM root tears, and therefore care should be taken by clinicians not to miss such lesions.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahn J, Choi B, Lee YS, Lee KW, Lee JW, Lee BK (2019) The mechanism and cause of anterior cruciate ligament tear in the Korean military environment. Knee Surg Relat Res 31:13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahn JH, Lee YS, Yoo JC, Chang MJ, Park SJ, Pae YR (2010) Results of arthroscopic all-inside repair for lateral meniscus root tear in patients undergoing concomitant anterior cruciate ligament reconstruction. Arthroscopy 26:67–75

    Article  PubMed  Google Scholar 

  3. Bisson LJ, Kluczynski MA, Hagstrom LS, Marzo JM (2013) A prospective study of the association between bone contusion and intra-articular injuries associated with acute anterior cruciate ligament tear. Am J Sports Med 41:1801–1807

    Article  PubMed  Google Scholar 

  4. Crawford R, Walley G, Bridgman S, Maffulli N (2007) Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: a systematic review. Br Med Bull 84:5–23

    Article  PubMed  Google Scholar 

  5. Diermeier T, Rothrauff BB, Engebretsen L, Lynch AD, Ayeni OR, Paterno MV et al (2020) Treatment after anterior cruciate ligament injury: panther symposium ACL treatment consensus group. Knee Surg Sports Traumatol Arthrosc 28:2390–2402

    Article  PubMed  PubMed Central  Google Scholar 

  6. Doherty DB, Lowe WR (2016) Meniscal root tears: identification and repair. Am J Orthop (Belle Mead NJ) 45:183–187

    Google Scholar 

  7. Escobedo EM, Mills WJ, Hunter JC (2002) The “reverse Segond” fracture: association with a tear of the posterior cruciate ligament and medial meniscus. Am J Roentgenol 178:979–983

    Article  Google Scholar 

  8. Feucht MJ, Bigdon S, Bode G, Salzmann GM, Dovi-Akue D, Sudkamp NP et al (2015) Associated tears of the lateral meniscus in anterior cruciate ligament injuries: risk factors for different tear patterns. J Orthop Surg Res 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  9. Feucht MJ, Bigdon S, Mehl J, Bode G, Muller-Lantzsch C, Sudkamp NP et al (2015) Risk factors for posterior lateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 23:140–145

    Article  PubMed  Google Scholar 

  10. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145

    Article  PubMed  Google Scholar 

  11. Feucht MJ, Salzmann GM, Bode G, Pestka JM, Kuhle J, Sudkamp NP et al (2015) Posterior root tears of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc 23:119–125

    Article  PubMed  Google Scholar 

  12. Flint JH, Wade AM, Giuliani J, Rue JP (2014) Defining the terms acute and chronic in orthopaedic sports injuries: a systematic review. Am J Sports Med 42:235–241

    Article  PubMed  Google Scholar 

  13. Forkel P, von Deimling C, Lacheta L, Imhoff FB, Foehr P, Willinger L et al (2018) Repair of the lateral posterior meniscal root improves stability in an ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc 26:2302–2309

    Article  PubMed  Google Scholar 

  14. Ha JK, Kim JG, Yoon KH, Wang JH, Seon JK, Bae JH et al (2019) Korean version of the anterior cruciate ligament-return to sport after injury scale: translation and cross-cultural adaptation. Clin Orthop Surg 11:164–169

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hatayama K, Terauchi M, Saito K, Aoki J, Nonaka S, Higuchi H (2018) Magnetic resonance imaging diagnosis of medial meniscal ramp lesions in patients with anterior cruciate ligament injuries. Arthroscopy 34:1631–1637

    Article  PubMed  Google Scholar 

  16. Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234

    Article  CAS  PubMed  Google Scholar 

  17. Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469:2377–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim JG, Lee YS, Bae TS, Ha JK, Lee DH, Kim YJ et al (2013) Tibiofemoral contact mechanics following posterior root of medial meniscus tear, repair, meniscectomy, and allograft transplantation. Knee Surg Sports Traumatol Arthrosc 21:2121–2125

    Article  PubMed  Google Scholar 

  19. Kim SG, Kim SH, Baek JH, Kim JG, Jang KM, Lim HC et al (2019) High incidence of subsequent re-operation following treatments for medial meniscus tears combined with anterior cruciate ligament reconstruction: second-look arthroscopic study. Knee Surg Relat Res 31:11

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim SH, Han SJ, Park YB, Kim DH, Lee HJ, Pujol N (2021) A systematic review comparing the results of early vs delayed ligament surgeries in single anterior cruciate ligament and multiligament knee injuries. Knee Surg Relat Res 33:1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim SH, Park YB, Ham DW, Lim JW, Lee HJ (2019) Stress radiography at 30 degrees of knee flexion is a reliable evaluation tool for high-grade rotatory laxity in complete ACL-injured knees. Knee Surg Sports Traumatol Arthrosc 28:2233–2244

    Article  PubMed  Google Scholar 

  22. Kim SH, Seo HJ, Seo DW, Kim KI, Lee SH (2020) Analysis of risk factors for ramp lesions associated with anterior cruciate ligament injury. Am J Sports Med 48:1673–1681

    Article  PubMed  Google Scholar 

  23. Kolbe R, Schmidt-Hebbel A, Forkel P, Pogorzelski J, Imhoff AB, Feucht MJ (2019) Steep lateral tibial slope and lateral-to-medial slope asymmetry are risk factors for concomitant posterolateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 27:2585–2591

    Article  PubMed  Google Scholar 

  24. Krych AJ, Wu IT, Desai VS, Murthy NS, Collins MS, Saris DBF et al (2018) High rate of missed lateral meniscus posterior root tears on preoperative magnetic resonance imaging. Orthop J Sports Med 6:2325967118765722

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kwee RM, Ahlawat S, Kompel AJ, Morelli JN, Fayad LM, Zikria BA et al (2015) Association of mucoid degeneration of anterior cruciate ligament with knee meniscal and cartilage damage. Osteoarthr Cartil 23:1543–1550

    Article  CAS  Google Scholar 

  26. LaPrade CM, Jansson KS, Dornan G, Smith SD, Wijdicks CA, LaPrade RF (2014) Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs. J Bone Jt Surg Am 96:471–479

    Article  Google Scholar 

  27. Lee HJ, Park YB, Kim SH (2019) Diagnostic value of stress radiography and arthrometer measurement for anterior instability in anterior cruciate ligament injured knees at different knee flexion position. Arthroscopy 35:1721–1732

    Article  PubMed  Google Scholar 

  28. Li K, Li J, Zheng X, Marot V, Murgier J, Cavaignac E et al (2019) Increased lateral meniscal slope is associated with greater incidence of lateral bone contusions in noncontact ACL injury. Knee Surg Sports Traumatol Arthrosc 28:2000–2008

    Article  PubMed  Google Scholar 

  29. Lintz F, Pujol N, Dejour D, Boisrenoult P, Beaufils P (2010) Anterior cruciate ligament mucoid degeneration: selecting the best treatment option. Orthop Traumatol Surg Res 96:400–406

    Article  CAS  PubMed  Google Scholar 

  30. Lodewijks P, Delawi D, Bollen TL, Dijkhuis GR, Wolterbeek N, Zijl JAC (2019) The lateral femoral notch sign: a reliable diagnostic measurement in acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 27:659–664

    Article  PubMed  Google Scholar 

  31. Louboutin H, Debarge R, Richou J, Selmi TA, Donell ST, Neyret P et al (2009) Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee 16:239–244

    Article  PubMed  Google Scholar 

  32. Markl I, Zantop T, Zeman F, Seitz J, Angele P (2015) The effect of tibial slope in acute ACL-insufficient patients on concurrent meniscal tears. Arch Orthop Trauma Surg 135:1141–1149

    Article  PubMed  Google Scholar 

  33. Mehl J, Otto A, Baldino JB, Achtnich A, Akoto R, Imhoff AB et al (2019) The ACL-deficient knee and the prevalence of meniscus and cartilage lesions: a systematic review and meta-analysis (CRD42017076897). Arch Orthop Trauma Surg 139:819–841

    Article  PubMed  Google Scholar 

  34. Miller LS, Yu JS (2010) Radiographic indicators of acute ligament injuries of the knee: a mechanistic approach. Emerg Radiol 17:435–444

    Article  PubMed  Google Scholar 

  35. Nguyen JT, Wasserstein D, Reinke EK, Spindler KP, Mehta N, Doyle JB et al (2016) Does the chronicity of anterior cruciate ligament ruptures influence patient-reported outcomes before surgery? Am J Sports Med 45:541–549

    Article  PubMed  PubMed Central  Google Scholar 

  36. Okoroha KR, Patel RB, Kadri O, Jildeh TR, Krause A, Gulledge C et al (2019) Abnormal tibial alignment is a risk factor for lateral meniscus posterior root tears in patients with anterior cruciate ligament ruptures. Knee Surg Sports Traumatol Arthrosc 27:590–595

    Article  PubMed  Google Scholar 

  37. Patel SA, Hageman J, Quatman CE, Wordeman SC, Hewett TE (2014) Prevalence and location of bone bruises associated with anterior cruciate ligament injury and implications for mechanism of injury: a systematic review. Sports Med 44:281–293

    Article  PubMed  PubMed Central  Google Scholar 

  38. Phelan N, Rowland P, Galvin R, O’Byrne JM (2016) A systematic review and meta-analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee. Knee Surg Sports Traumatol Arthrosc 24:1525–1539

    Article  PubMed  Google Scholar 

  39. Praz C, Vieira TD, Saithna A, Rosentiel N, Kandhari V, Nogueira H et al (2019) Risk factors for lateral meniscus posterior root tears in the anterior cruciate ligament-injured knee: an epidemiological analysis of 3956 patients from the SANTI study group. Am J Sports Med 47:598–605

    Article  PubMed  Google Scholar 

  40. Rasenberg EI, Lemmens JA, van Kampen A, Schoots F, Bloo HJ, Wagemakers HP et al (1995) Grading medial collateral ligament injury: comparison of MR imaging and instrumented valgus-varus laxity test-device. A prospective double-blind patient study. Eur J Radiol 21:18–24

    Article  CAS  PubMed  Google Scholar 

  41. Saad A, Waldron D, Iqbal A, Evans S, Panchal H, James S et al (2020) Anterior translation of the tibia in relation to femur in mucoid degeneration of ACL—an observational study. J Orthop 18:240–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sanders TG, Medynski MA, Feller JF, Lawhorn KW (2000) Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 20:S135-151

    Article  PubMed  Google Scholar 

  43. Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC et al (2015) Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 43:905–911

    Article  PubMed  Google Scholar 

  44. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Song GY, Liu X, Zhang H, Wang QQ, Zhang J, Li Y et al (2016) Increased medial meniscal slope is associated with greater risk of ramp lesion in noncontact anterior cruciate ligament injury. Am J Sports Med 44:2039–2046

    Article  PubMed  Google Scholar 

  46. Song GY, Zhang H, Wang QQ, Zhang J, Li Y, Feng H (2016) Bone contusions after acute noncontact anterior cruciate ligament injury are associated with knee joint laxity, concomitant meniscal lesions, and anterolateral ligament abnormality. Arthroscopy 32:2331–2341

    Article  PubMed  Google Scholar 

  47. Song GY, Zhang H, Zhang J, Liu X, Xue Z, Qian Y et al (2018) Greater static anterior tibial subluxation of the lateral compartment after an acute anterior cruciate ligament injury is associated with an increased posterior tibial slope. Am J Sports Med 46:1617–1623

    Article  PubMed  Google Scholar 

  48. Sood M, Kulshrestha V, Sachdeva J, Ghai A, Sud A, Singh S (2020) Poor functional outcome in patients with voluntary knee instability after anterior cruciate ligament reconstruction. Clin Orthop Surg 12:312–317

    Article  PubMed  PubMed Central  Google Scholar 

  49. Terzidis IP, Christodoulou AG, Ploumis AL, Metsovitis SR, Koimtzis M, Givissis P (2004) The appearance of kissing contusion in the acutely injured knee in the athletes. Br J Sports Med 38:592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsujii A, Yonetani Y, Kinugasa K, Matsuo T, Yoneda K, Ohori T et al (2021) Outcomes more than 2 years after meniscal repair for longitudinal tears of the lateral meniscus combined with anterior cruciate ligament reconstruction. Am J Sports Med 15:0363546520981976

    Google Scholar 

  51. Viskontas DG, Giuffre BM, Duggal N, Graham D, Parker D, Coolican M (2008) Bone bruises associated with ACL rupture: correlation with injury mechanism. Am J Sports Med 36:927–933

    Article  PubMed  Google Scholar 

  52. Yoon KH, Yoo JH, Kim KI (2011) Bone contusion and associated meniscal and medial collateral ligament injury in patients with anterior cruciate ligament rupture. J Bone Jt Surg Am 93:1510–1518

    Article  Google Scholar 

  53. Zhang L, Hacke JD, Garrett WE, Liu H, Yu B (2019) Bone Bruises associated with anterior cruciate ligament injury as indicators of injury mechanism: a systematic review. Sports Med 49:453–462

    Article  PubMed  Google Scholar 

  54. Zheng T, Song GY, Feng H, Zhang H, Li Y, Li X et al (2020) Lateral meniscus posterior root lesion influences anterior tibial subluxation of the lateral compartment in extension after anterior cruciate ligament injury. Am J Sports Med 48:838–846

    Article  PubMed  Google Scholar 

Download references

Funding

No funding to declare for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hak Lee.

Ethics declarations

Conflict of interest

The authors report no conflict of interest/financial disclosure.

Ethical approval

This is approved by the institutional review board of Kyung Hee University Hospital at Gangdong (Institutional Review Board/protocol number, KHNMC2019-08-003.)

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Seo, JH., Kim, DA. et al. Steep posterior lateral tibial slope, bone contusion on lateral compartments and combined medial collateral ligament injury are associated with the increased risk of lateral meniscal tear. Knee Surg Sports Traumatol Arthrosc 30, 298–308 (2022). https://doi.org/10.1007/s00167-021-06504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06504-z

Keywords

Navigation