Skip to main content
Log in

Computer-assisted surgery and patient-specific instrumentation improve the accuracy of tibial baseplate rotation in total knee arthroplasty compared to conventional instrumentation: a systematic review and meta-analysis

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To determine whether patient-specific instrumentation (PSI), computer-assisted surgery (CAS) or robot-assisted surgery (RAS) enable more accurate rotational alignment of the tibial baseplate in primary total knee arthroplasty (TKA) compared to conventional instrumentation, in terms of deviation from the planned target and the proportion of outliers from the target zone.

Methods

The authors independently conducted three structured electronic literature searches using the PubMed, Embase®, and Cochrane Central Register of Controlled Trials databases from 2007 to 2020. Studies were included if they compared rotational alignment of the tibial baseplate during TKA using conventional instrumentation versus PSI, CAS, and/or RAS, and reported deviation from preoperatively planned rotational alignment of the tibial baseplate in terms of absolute angles and/or number of outliers. Methodological quality of eligible studies was assessed by two researchers according to the Downs and Black Quality Checklist for Health Care Intervention Studies.

Results

Fifteen studies, that reported on 2925 knees, were eligible for this systematic review, of which 6 studies used PSI, and 9 used CAS. No studies were found for RAS. Of the studies that reported on angular deviation from preoperatively planned rotational alignment, most found smaller deviations using PSI (0.5° to 1.4°) compared to conventional instrumentation (1.0° to 1.6°). All studies that reported on proportions of outliers from a target zone (± 3°), found lower rates of outliers using PSI (0 to 22%) compared to conventional instrumentation (5 to 96%). Most studies reported smaller angular deviation from preoperatively planned rotational alignment using CAS (0.1° to 6.9°) compared to conventional instrumentation (1.1° to 7.8°). Of the studies that reported on proportions of outliers from a target zone (± 3°), most found fewer outliers using CAS (10 to 61%) compared to conventional instrumentation (17 to 78%).

Conclusion

This systematic review and meta-analysis revealed that both CAS and PSI can improve the accuracy of rotational alignment of the tibial baseplate by decreasing angular deviation from the preoperatively planned target and reducing the proportion of outliers from the target zone. The clinical relevance is that PSI and CAS can improve alignment, though the thresholds necessary to grant better outcomes and survival remain unclear.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agarwal N, To K, McDonnell S, Khan W (2020) Clinical and radiological outcomes in robotic-assisted total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty. https://doi.org/10.1016/j.arth.2020.03.005

    Article  PubMed  Google Scholar 

  2. Aglietti P, Sensi L, Cuomo P, Ciardullo A (2008) Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clin Orthop Relat Res 466(11):2751–2755

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219

    Article  Google Scholar 

  4. Allen CL, Hooper GJ, Oram BJ, Wells JE (2014) Does computer-assisted total knee arthroplasty improve the overall component position and patient function? Int Orthop 38(2):251–257

    Article  PubMed  Google Scholar 

  5. Baldini A, Indelli PF, Luca DEL, Mariani PC, Marcucci M (2013) Rotational alignment of the tibial component in total knee arthroplasty: the anterior tibial cortex is a reliable landmark. Joints 1(4):155–160

    Article  PubMed  Google Scholar 

  6. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55

    Article  Google Scholar 

  7. Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A, Stengel D (2007) Navigated total knee replacement. A meta-analysis. J Bone Jt Surg Am 89(2):261–269

    Article  Google Scholar 

  8. Bedard M, Vince KG, Redfern J, Collen SR (2011) Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clin Orthop Relat Res 469(8):2346–2355

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bell SW, Young P, Drury C, Smith J, Anthony I, Jones B, Blyth M, McLean A (2014) Component rotational alignment in unexplained painful primary total knee arthroplasty. Knee 21(1):272–277

    Article  PubMed  Google Scholar 

  10. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  Google Scholar 

  11. Blakeney WG, Khan RJ, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 93(15):1377–1384

    Article  PubMed  Google Scholar 

  12. Brin YS, Nikolaou VS, Joseph L, Zukor DJ, Antoniou J (2011) Imageless computer assisted versus conventional total knee replacement. A Bayesian meta-analysis of 23 comparative studies. Int Orthop 35(3):331–339

    Article  PubMed  Google Scholar 

  13. Carter RE 3rd, Rush PF, Smid JA, Smith WL (2008) Experience with computer-assisted navigation for total knee arthroplasty in a community setting. J Arthroplasty 23(5):707–713

    Article  PubMed  Google Scholar 

  14. Cerciello S, Ollivier M, Corona K, Kaocoglu B, Seil R (2020) CAS and PSI increase coronal alignment accuracy and reduce outliers when compared to traditional technique of medial open wedge high tibial osteotomy: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06253-5

    Article  PubMed  Google Scholar 

  15. Chanalithichai N, Tammachote N, Jitapunkul C, Kanitnate S (2019) Rotational component alignment in patient-specific total knee arthroplasty compared with conventional cutting instrument. Eur J Orthop Surg Traumatol 29(6):1297–1304

    Article  PubMed  Google Scholar 

  16. Cheng T, Zhang G, Zhang X (2011) Imageless navigation system does not improve component rotational alignment in total knee arthroplasty. J Surg Res 171(2):590–600

    Article  PubMed  Google Scholar 

  17. Chin BZ, Tan SSH, Chua KCX, Budiono GR, Syn NL, O’Neill GK (2020) Robot-assisted versus conventional total and unicompartmental knee arthroplasty: a meta-analysis of radiological and functional outcomes. J Knee Surg. https://doi.org/10.1055/s-0040-1701440

    Article  PubMed  Google Scholar 

  18. De Vloo R, Pellikaan P, Dhollander A, Vander Sloten J (2017) Three-dimensional analysis of accuracy of component positioning in total knee arthroplasty with patient specific and conventional instruments: a randomized controlled trial. Knee 24(6):1469–1477

    Article  PubMed  Google Scholar 

  19. Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52(6):377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Faber T, Ravaud P, Riveros C, Perrodeau E, Dechartres A (2016) Meta-analyses including non-randomized studies of therapeutic interventions: a methodological review. BMC Med Res Methodol 16:35

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fu J, Wang Y, Li X, Yu B, Ni M, Chai W, Hao L, Chen J (2018) Robot-assisted vs conventional unicompartmental knee arthroplasty: systematic review and meta-analysis. Orthopade 47(12):1009–1017

    Article  PubMed  Google Scholar 

  22. Fu Y, Wang M, Liu Y, Fu Q (2012) Alignment outcomes in navigated total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 20(6):1075–1082

    Article  PubMed  Google Scholar 

  23. Hasegawa M, Yoshida K, Wakabayashi H, Sudo A (2011) Minimally invasive total knee arthroplasty: comparison of jig-based technique versus computer navigation for clinical and alignment outcome. Knee Surg Sports Traumatol Arthrosc 19(6):904–910

    Article  PubMed  Google Scholar 

  24. Hernandez-Vaquero D, Noriega-Fernandez A, Fernandez-Carreira JM, Fernandez-Simon JM, Llorens de los Rios J, (2014) Computer-assisted surgery improves rotational positioning of the femoral component but not the tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(12):3127–3134

    Article  PubMed  Google Scholar 

  25. Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK (2012) Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty 27(6):1177–1182

    Article  PubMed  Google Scholar 

  26. Heyse TJ, Stiehl JB, Tibesku CO (2015) Measuring tibial component rotation of TKA in MRI: What is reproducible? Knee 22(6):604–608

    Article  PubMed  Google Scholar 

  27. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, Cochrane Bias Methods G, Cochrane Statistical Methods G (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

  28. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hiscox CM, Bohm ER, Turgeon TR, Hedden DR, Burnell CD (2011) Randomized trial of computer-assisted knee arthroplasty: impact on clinical and radiographic outcomes. J Arthroplasty 26(8):1259–1264

    Article  PubMed  Google Scholar 

  30. Huijbregts HJ, Khan RJ, Fick DP, Hall MJ, Punwar SA, Sorensen E, Reid MJ, Vedove SD, Haebich S (2016) Component alignment and clinical outcome following total knee arthroplasty: a randomised controlled trial comparing an intramedullary alignment system with patient-specific instrumentation. Bone Jt J 98-b(8):1043–1049

    Article  CAS  Google Scholar 

  31. Huijbregts HJ, Khan RJ, Sorensen E, Fick DP, Haebich S (2016) Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty. Acta Orthop 87(4):386–394

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang J, Kang X, Lin Q, Teng Y, An L, Ma J, Wang J, Xia Y (2015) Accuracy of patient-specific instrumentation compared with conventional instrumentation in total knee arthroplasty. Orthopedics 38(4):e305-313

    Article  PubMed  Google Scholar 

  33. Kessler O, Lacatusu E, Sommers MB, Mayr E, Bottlang M (2006) Malrotation in total knee arthroplasty: effect on tibial cortex strain captured by laser-based strain acquisition. Clin Biomech (Bristol, Avon) 21(6):603–609

    Article  Google Scholar 

  34. Kim CW, Seo SS, Kim JH, Roh SM, Lee CR (2014) The anteroposterior axis of the tibia in Korean patients undergoing total knee replacement. Bone Jt J 96(11):1485–1490

    Article  Google Scholar 

  35. Kim JI, Jang J, Lee KW, Han HS, Lee S, Lee MC (2017) Anterior tibial curved cortex is a reliable landmark for tibial rotational alignment in total knee arthroplasty. BMC Musculoskelet Disord 18(1):252

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim YH, Park JW, Kim JS (2012) Computer-navigated versus conventional total knee arthroplasty a prospective randomized trial. J Bone Jt Surg Am 94(22):2017–2024

    Article  Google Scholar 

  37. Kuriyama S, Hyakuna K, Inoue S, Tamaki Y, Ito H, Matsuda S (2014) Tibial rotational alignment was significantly improved by use of a CT-navigated control device in total knee arthroplasty. J Arthroplasty 29(12):2352–2356

    Article  PubMed  Google Scholar 

  38. Kuriyama S, Ishikawa M, Furu M, Ito H, Matsuda S (2014) Malrotated tibial component increases medial collateral ligament tension in total knee arthroplasty. J Orthop Res 32(12):1658–1666

    Article  PubMed  Google Scholar 

  39. Kwon OR, Kang KT, Son J, Suh DS, Heo DB, Koh YG (2017) The effect of patient-specific instrumentation incorporating an extramedullary tibial guide on operative efficiency for total knee arthroplasty. Biomed Res Int 2017:2034782

    PubMed  PubMed Central  Google Scholar 

  40. Lakstein D, Zarrabian M, Kosashvili Y, Safir O, Gross AE, Backstein D (2010) Revision total knee arthroplasty for component malrotation is highly beneficial: a case control study. J Arthroplasty 25(7):1047–1052

    Article  PubMed  Google Scholar 

  41. Lutzner J, Kirschner S, Gunther KP, Harman MK (2012) Patients with no functional improvement after total knee arthroplasty show different kinematics. Int Orthop 36(9):1841–1847

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mannan A, Vun J, Lodge C, Eyre-Brook A, Jones S (2018) Increased precision of coronal plane outcomes in robotic-assisted total knee arthroplasty: a systematic review and meta-analysis. Surgeon 16(4):237–244

    Article  PubMed  Google Scholar 

  43. Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty 22(8):1097–1106

    Article  PubMed  Google Scholar 

  44. Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Jt Surg Am 89(2):236–243

    Article  Google Scholar 

  45. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, and the P-DTAG, Clifford T, Cohen JF, Deeks JJ, Gatsonis C, Hooft L, Hunt HA, Hyde CJ, Korevaar DA, Leeflang MMG, Macaskill P, Reitsma JB, Rodin R, Rutjes AWS, Salameh JP, Stevens A, Takwoingi Y, Tonelli M, Weeks L, Whiting P, Willis BH (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 319(4):388–396

  46. Mitsuhashi S, Akamatsu Y, Kobayashi H, Kusayama Y, Kumagai K, Saito T (2018) Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component. Arch Orthop Trauma Surg 138(2):259–266

    Article  PubMed  Google Scholar 

  47. Mizu-uchi H, Matsuda S, Miura H, Okazaki K, Akasaki Y, Iwamoto Y (2008) The evaluation of post-operative alignment in total knee replacement using a CT-based navigation system. J Bone Jt Surg Br 90(8):1025–1031

    Article  CAS  Google Scholar 

  48. Ng VY, Arnott L, Li J, Hopkins R, Lewis J, Sutphen S, Nicholson L, Reader D, McShane MA (2014) Comparison of custom to standard TKA instrumentation with computed tomography. Knee Surg Sports Traumatol Arthrosc 22(8):1833–1842

    Article  PubMed  Google Scholar 

  49. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Jt Surg Br 92(9):1238–1244

    Article  CAS  Google Scholar 

  50. Osano K, Nagamine R, Todo M, Kawasaki M (2014) The effect of malrotation of tibial component of total knee arthroplasty on tibial insert during high flexion using a finite element analysis. Sci World J 2014:695028

    Article  Google Scholar 

  51. Panni AS, Ascione F, Rossini M, Braile A, Corona K, Vasso M, Hirschmann MT (2018) Tibial internal rotation negatively affects clinical outcomes in total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc 26(6):1636–1644

    Article  PubMed  Google Scholar 

  52. Ren Y, Cao S, Wu J, Weng X, Feng B (2019) Efficacy and reliability of active robotic-assisted total knee arthroplasty compared with conventional total knee arthroplasty: a systematic review and meta-analysis. Postgrad Med J 95(1121):125–133

    Article  PubMed  Google Scholar 

  53. Saffarini M, Nover L, Tandogan R, Becker R, Moser LB, Hirschmann MT, Indelli PF (2019) The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA. Knee Surg Sports Traumatol Arthrosc 27(4):1018–1027

    Article  PubMed  Google Scholar 

  54. Schmitt J, Hauk C, Kienapfel H, Pfeiffer M, Efe T, Fuchs-Winkelmann S, Heyse TJ (2011) Navigation of total knee arthroplasty: rotation of components and clinical results in a prospectively randomized study. BMC Musculoskelet Disord 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  55. Steinbruck A, Schroder C, Woiczinski M, Muller T, Muller PE, Jansson V, Fottner A (2016) Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: an in vitro study. Knee Surg Sports Traumatol Arthrosc 24(8):2395–2401

    Article  PubMed  Google Scholar 

  56. Stöckl B, Nogler M, Rosiek R, Fischer M, Krismer M, Kessler O (2004) Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 426:180–186

    Article  Google Scholar 

  57. Stolarczyk A, Nagraba L, Mitek T, Stolarczyk M, Deszczynski JM, Jakucinski M (2018) Does patient-specific instrumentation improve femoral and tibial component alignment in total knee arthroplasty? A prospective randomized study. Adv Exp Med Biol 1096:11–17

    Article  PubMed  Google Scholar 

  58. Sunnassee Y, Zhang H, Southern EP, Wang Y, Shen Y (2015) Reliability of intra-articular rotational axes at standard tibial resection level and effect of resecting distally. J Knee Surg 28(3):223–228

    Article  PubMed  Google Scholar 

  59. Tao K, Cai M, Zhu Y, Lou L, Cai Z (2014) Aligning the tibial component with medial border of the tibial tubercle—is it always right? Knee 21(1):295–298

    Article  PubMed  Google Scholar 

  60. Thielemann FW, Konstantinids L, Herget GW, Knothe D, Helwig P, Sudkamp NP, Hauschild O (2016) Effect of rotational component alignment on clinical outcome 5 to 7 years after TKA with the columbus knee system. Orthopedics 39(3 Suppl):S50-55

    PubMed  Google Scholar 

  61. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y (2002) Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 402:196–201

    Article  Google Scholar 

  62. Vaidya NV, Deshpande AN, Panjwani T, Patil R, Jaysingani T, Patil P (2020) Robotic-assisted TKA leads to a better prosthesis alignment and a better joint line restoration as compared to conventional TKA: a prospective randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06353-2

    Article  PubMed  Google Scholar 

  63. Valkering KP, Breugem SJ, van den Bekerom MP, Tuinebreijer WE, van Geenen RC (2015) Effect of rotational alignment on outcome of total knee arthroplasty. Acta Orthop 86(4):432–439

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vermue H, Luyckx T, Winnock de Grave P, Ryckaert A, Cools AS, Himpe N, Victor J (2020) Robot-assisted total knee arthroplasty is associated with a learning curve for surgical time but not for component alignment, limb alignment and gap balancing. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06341-6

    Article  PubMed  Google Scholar 

  65. Zhang QM, Chen JY, Li H, Chai W, Ni M, Zhang ZD, Yang F (2015) No evidence of superiority in reducing outliers of component alignment for patient-specific instrumentation for total knee arthroplasty: a systematic review. Orthop Surg 7(1):19–25

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang XL, Zhang W, Shao JJ (2012) Rotational alignment in total knee arthroplasty: nonimage-based navigation system versus conventional technique. Chin Med J (Engl) 125(2):236–243

    Google Scholar 

Download references

Acknowledgements

Pier-Francesco Indelli: Stanford University School of Medicine and the Palo Alto Veterans Affairs Health Care System (PAVAHCS), Palo Alto, CA, USA. Nanne P. Kort: CortoClinics, Steeg 6E, 5482 WN, Schijndel, The Netherlands. Michael Liebensteiner: Department for Orthopaedic Surgery and Traumatology, Medical University Innsbruck, Innsbruck, Austria. Jacobus H. Muller: ReSurg SA, Rue Saint Jean 22, 1260 Nyon, Switzerland. Antonia Chen: Department of Orthopaedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. René Attal: Department of Trauma Surgery and Sports Traumatology, Academic Hospital Feldkirch, LKH Feldkirch, Carinagasse 47, 6807, Feldkirch, Austria. Markus P. Arnold: Practice LEONARDO - Physicians for Orthopaedic and Traumatologic Surgery, Hirslanden Clinic Birshof, 4142, Münchenstein, Basel, Switzerland. Alfredo Schiavone-Panni: Department of Medical and Surgical Specialties and Dentistry, University of Campania Luigi Vanvitelli, Naples 80138, Italy.

Funding

The authors are grateful to Ramsay Santé for funding the statistical analysis and manuscript preparation for this study.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Floris van Rooij.

Ethics declarations

Conflict of interest

MS, LN, FvR, EE, RB and MTH declare that they have no competing interests; RNT reports personal fees from Smith & Nephew, personal fees from Menerini Pharma, personal fees from Santa Farma Pharma; NPK reports other fees from BodyCad, Stryker, Zimmer-Biomet, bioventus; DD reports personal fees from SBM.

Ethical approval

Not required for systematic reviews and meta-analyses.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the European Knee Associates (EKA) are listed in the Acknowledgements Section.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 51 KB)

Supplementary file2 (PDF 208 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandogan, R.N., Kort, N.P., Ercin, E. et al. Computer-assisted surgery and patient-specific instrumentation improve the accuracy of tibial baseplate rotation in total knee arthroplasty compared to conventional instrumentation: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 30, 2654–2665 (2022). https://doi.org/10.1007/s00167-021-06495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06495-x

Keywords

Navigation