Skip to main content

Advertisement

Log in

Preoperative ultrasound predicts the intraoperative diameter of the quadriceps tendon autograft more accurately than preoperative magnetic resonance imaging for anterior cruciate ligament reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Sizing of potential autografts is essential to match the native anterior cruciate ligament (ACL) dimensions when performing ACL reconstruction (ACLR). We aimed to investigate the accuracy and reliability of the thickness and cross-sectional area (CSA) assessments for the prediction of the intraoperative diameter of the QT autograft using preoperative ultrasound and MRI.

Methods

Thirty patients (mean age ± standard deviation, 19.9 ± 5.0 years), who underwent ACLR using QT autograft, were included. The maximum thickness of the QT was assessed at 15 and 30 mm proximal using ultrasound with a long axis image, and at 15 mm proximal to the superior pole of the patella using MRI with a sagittal image. The CSA was assessed at the central 10 mm of the medial–lateral QT width at 30 mm proximal using ultrasound with a short axis image, and at 15 mm proximal to the superior pole of the patella using MRI with an axial image. Intraoperatively, QT autograft was harvested with a 10 mm width and the diameter was measured using a graft sizing device.

Results

Intra- and inter-observer reliabilities of all measurements using ultrasound and MRI were good (Intra-class correlation coefficient, 0.720–0.941). Correlation coefficient with the intraoperative diameter of the QT autograft was higher in ultrasound (R = 0.738–0.791, P < 0.001) than MRI (R = 0.449–0.543, P = 0.002–0.013).

Conclusions

Preoperative ultrasound predicted the intraoperative diameter of the QT autograft more accurately than MRI. Ultrasound may be used clinically to assure a sufficiently large QT autograft diameter to match the diameter of the patient’s native ACL.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. An VVG, Scholes C, Mhaskar VA, Parker DA, Fritsch BA (2017) Regression modelling combining MRI measurements and patient anthropometry for patient screening and prediction of graft diameter in hamstring autograft arthroscopic ACL reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol 8:24–31

    PubMed  PubMed Central  Google Scholar 

  2. Araujo PH, Kfuri Junior M, Ohashi B, Hoshino Y, Zaffagnini S, Samuelsson K et al (2014) Individualized ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 22:1966–1975

    PubMed  Google Scholar 

  3. Belk JW, Kraeutler MJ, Marshall HA, Goodrich JA, McCarty EC (2018) Quadriceps tendon autograft for primary anterior cruciate ligament reconstruction: a systematic review of comparative studies with minimum 2-year follow-up. Arthroscopy 34:1699–1707

    PubMed  Google Scholar 

  4. Beyzadeoglu T, Akgun U, Tasdelen N, Karahan M (2012) Prediction of semitendinosus and gracilis autograft sizes for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1293–1297

    PubMed  Google Scholar 

  5. Bickel BA, Fowler TT, Mowbray JG, Adler B, Klingele K, Phillips G (2008) Preoperative magnetic resonance imaging cross-sectional area for the measurement of hamstring autograft diameter for reconstruction of the adolescent anterior cruciate ligament. Arthroscopy 24:1336–1341

    PubMed  Google Scholar 

  6. Boniello MR, Schwingler PM, Bonner JM, Robinson SP, Cotter A, Bonner KF (2015) Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthroscopy 31:1084–1090

    PubMed  Google Scholar 

  7. Chen W, Li H, Chen Y, Jiang F, Wu Y, Chen S (2019) Bone-patellar tendon-bone autografts versus hamstring autografts using the same suspensory fixations in ACL reconstruction: a systematic review and meta-analysis. Orthop J Sports Med 7:2325967119885314

    PubMed  PubMed Central  Google Scholar 

  8. Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30:882–890

    PubMed  Google Scholar 

  9. Diermeier T, Tisherman R, Hughes J, Tulman M, Baum Coffey E, Fink C et al (2020) Quadriceps tendon anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 28:2644–2656

    PubMed  Google Scholar 

  10. Erquicia JI, Gelber PE, Doreste JL, Pelfort X, Abat F, Monllau JC (2013) How to improve the prediction of quadrupled semitendinosus and gracilis autograft sizes with magnetic resonance imaging and ultrasonography. Am J Sports Med 41:1857–1863

    PubMed  Google Scholar 

  11. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149–1160

    PubMed  Google Scholar 

  12. Fessy MH, Putman S, Viste A, Isida R, Ramdane N, Ferreira A, et al (2017) Erratum to "What are the risk factors for dislocation in primary total hip arthroplasty? A multicenter case-control study of 128 unstable and 438 stable hips" [Orthop. Traumatol. Surg. Res. 103 (2017) 663-8]. Orthop Traumatol Surg Res 103:1137

  13. Gagliardi AG, Carry PM, Parikh HB, Albright JC (2019) Outcomes of quadriceps tendon with patellar bone block anterior cruciate ligament reconstruction in adolescent patients with a minimum 2-year follow-up. Am J Sports Med 48(1):93–98. https://doi.org/10.1177/0363546519885371

    Article  PubMed  Google Scholar 

  14. Galanis N, Savvidis M, Tsifountoudis I, Gkouvas G, Alafropatis I, Kirkos J et al (2016) Correlation between semitendinosus and gracilis tendon cross-sectional area determined using ultrasound, magnetic resonance imaging and intraoperative tendon measurements. J Electromyogr Kinesiol 26:44–51

    PubMed  Google Scholar 

  15. Grawe BM, Williams PN, Burge A, Voigt M, Altchek DW, Hannafin JA et al (2016) Anterior cruciate ligament reconstruction with autologous hamstring: can preoperative magnetic resonance imaging accurately predict graft diameter? Orthop J Sports Med 4:2325967116646360

    PubMed  PubMed Central  Google Scholar 

  16. Guenther D, Irarrazaval S, Albers M, Vernacchia C, Irrgang JJ, Musahl V et al (2017) Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size. Knee Surg Sports Traumatol Arthrosc 25:1576–1582

    PubMed  Google Scholar 

  17. Hamrin Senorski E, Seil R, Svantesson E, Feller JA, Webster KE, Engebretsen L et al (2018) “I never made it to the pros...” Return to sport and becoming an elite athlete after pediatric and adolescent anterior cruciate ligament injury-Current evidence and future directions. Knee Surg Sports Traumatol Arthrosc 26:1011–1018

    PubMed  Google Scholar 

  18. Hofbauer M, Muller B, Murawski CD, van Eck CF, Fu FH (2014) The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc 22:979–986

    CAS  PubMed  Google Scholar 

  19. Iriuchishima T, Shirakura K, Yorifuji H, Aizawa S, Murakami T, Fu FH (2013) ACL footprint size is correlated with the height and area of the lateral wall of femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 21:789–796

    PubMed  Google Scholar 

  20. Kanakamedala AC, de Sa D, Obioha OA, Arakgi ME, Schmidt PB, Lesniak BP et al (2019) No difference between full thickness and partial thickness quadriceps tendon autografts in anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 27:105–116

    PubMed  Google Scholar 

  21. Kim SH, Lee HJ, Park YB, Jeong HS, Ha CW (2018) Anterior cruciate ligament tibial footprint size as measured on magnetic resonance imaging: does it reliably predict actual size? Am J Sports Med 46:1877–1884

    PubMed  Google Scholar 

  22. Leiter J, Elkurbo M, McRae S, Chiu J, Froese W, MacDonald P (2017) Using pre-operative MRI to predict intraoperative hamstring graft size for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 25:229–235

    PubMed  Google Scholar 

  23. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531

    PubMed  Google Scholar 

  24. Mariscalco MW, Flanigan DC, Mitchell J, Pedroza AD, Jones MH, Andrish JT et al (2013) The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study. Arthroscopy 29:1948–1953

    PubMed  Google Scholar 

  25. Mohd Asihin MA, Bajuri MY, Ahmad J, Syed Kamaruddin SF (2018) Pre-operative ultrasonographic prediction of hamstring autograft size for anterior cruciate ligament reconstruction surgery. Ceylon Med J 63:11–16

    CAS  PubMed  Google Scholar 

  26. Mohtadi NG, Chan DS (2019) A randomized clinical trial comparing patellar tendon, hamstring tendon, and double-bundle ACL reconstructions: patient-reported and clinical outcomes at 5-year follow-up. J Bone Joint Surg Am 101:949–960

    PubMed  Google Scholar 

  27. Nyland J, Collis P, Huffstutler A, Sachdeva S, Spears JR, Greene J et al (2019) Quadriceps tendon autograft ACL reconstruction has less pivot shift laxity and lower failure rates than hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 28(2):509–518. https://doi.org/10.1007/s00167-019-05720-y

    Article  PubMed  Google Scholar 

  28. Offerhaus C, Albers M, Nagai K, Arner JW, Hoher J, Musahl V et al (2018) Individualized anterior cruciate ligament graft matching. in vivo comparison of cross-sectional areas of hamstring, patellar, and quadriceps tendon grafts and ACL insertion area. Am J Sports Med 46:2646–2652

    PubMed  Google Scholar 

  29. Orsi AD, Canavan PK, Vaziri A, Goebel R, Kapasi OA, Nayeb-Hashemi H (2017) The effects of graft size and insertion site location during anterior cruciate ligament reconstruction on intercondylar notch impingement. Knee 24:525–535

    PubMed  Google Scholar 

  30. Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH (2013) Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1111–1118

    PubMed  Google Scholar 

  31. Pennock AT, Ho B, Parvanta K, Edmonds EW, Chambers HG, Roocroft JH et al (2017) Does allograft augmentation of small-diameter hamstring autograft ACL grafts reduce the incidence of graft retear? Am J Sports Med 45:334–338

    PubMed  Google Scholar 

  32. Perez JR, Emerson CP, Barrera CM, Greif DN, Cade WH 2nd, Kaplan LD et al (2019) Patient-reported knee outcome scores with soft tissue quadriceps tendon autograft are similar to bone-patellar tendon-bone autograft at minimum 2-year follow-up: a retrospective single-center cohort study in primary anterior cruciate ligament reconstruction surgery. Orthop J Sports Med 7:2325967119890063

    PubMed  PubMed Central  Google Scholar 

  33. Rahnemai-Azar AA, Sabzevari S, Irarrazaval S, Chao T, Fu FH (2016) Anatomical individualized ACL reconstruction. Arch Bone Jt Surg 4:291–297

    PubMed  PubMed Central  Google Scholar 

  34. Rodriguez-Mendez LM, Martinez-Ruiz JJ, Perez-Manzo R, Corona-Hernandez JL, Alcala-Zermeno JL, Sanchez-Enriquez S (2017) Preoperative ultrasonographic prediction of hamstring tendon diameter for anterior cruciate ligament repair. J Knee Surg 30:544–548

    PubMed  Google Scholar 

  35. Salem HS, Varzhapetyan V, Patel N, Dodson CC, Tjoumakaris FP, Freedman KB (2019) Anterior cruciate ligament reconstruction in young female athletes: patellar versus hamstring tendon autografts. Am J Sports Med 47:2086–2092

    PubMed  Google Scholar 

  36. Sheean AJ, Musahl V, Slone HS, Xerogeanes JW, Milinkovic D, Fink C et al (2018) Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often. Br J Sports Med 52:698–701

    PubMed  Google Scholar 

  37. Slone HS, Romine SE, Premkumar A, Xerogeanes JW (2015) Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy 31:541–554

    PubMed  Google Scholar 

  38. Snaebjornsson T, Hamrin Senorski E, Ayeni OR, Alentorn-Geli E, Krupic F, Norberg F et al (2017) Graft diameter as a predictor for revision anterior cruciate ligament reconstruction and KOOS and EQ-5D values: a cohort study from the Swedish National Knee Ligament Register based on 2240 patients. Am J Sports Med 45:2092–2097

    PubMed  Google Scholar 

  39. Tachibana Y, Shino K, Mae T, Iuchi R, Take Y, Nakagawa S (2019) Anatomical rectangular tunnels identified with the arthroscopic landmarks result in excellent outcomes in ACL reconstruction with a BTB graft. Knee Surg Sports Traumatol Arthrosc 27:2680–2690

    PubMed  Google Scholar 

  40. Takenaga T, Yoshida M, Albers M, Nagai K, Nakamura T, Fu FH et al (2019) Preoperative sonographic measurement can accurately predict quadrupled hamstring tendon graft diameter for ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:797–804

    PubMed  Google Scholar 

  41. Takeuchi S, Rothrauff BB, Taguchi M, Kanto R, Onishi K, Fu FH (2020) In situ cross-sectional area of the quadriceps tendon using preoperative magnetic resonance imaging significantly correlates with the intraoperative diameter of the quadriceps tendon autograft. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-05993-8

    Article  PubMed  Google Scholar 

  42. Tashiro Y, Lucidi GA, Gale T, Nagai K, Herbst E, Irrgang JJ et al (2018) Anterior cruciate ligament tibial insertion site is elliptical or triangular shaped in healthy young adults: high-resolution 3-T MRI analysis. Knee Surg Sports Traumatol Arthrosc 26:485–490

    PubMed  Google Scholar 

  43. van Eck CF, Widhalm H, Murawski C, Fu FH (2015) Individualized anatomic anterior cruciate ligament reconstruction. Phys Sportsmed 43:87–92

    PubMed  Google Scholar 

  44. Watanabe BM, Howell SM (1995) Arthroscopic findings associated with roof impingement of an anterior cruciate ligament graft. Am J Sports Med 23:616–625

    CAS  PubMed  Google Scholar 

  45. Wernecke G, Harris IA, Houang MT, Seeto BG, Chen DB, MacDessi SJ (2011) Using magnetic resonance imaging to predict adequate graft diameters for autologous hamstring double-bundle anterior cruciate ligament reconstruction. Arthroscopy 27:1055–1059

    PubMed  Google Scholar 

  46. Widhalm HK, Surer L, Kurapati N, Guglielmino C, Irrgang JJ, Fu FH (2016) Tibial ACL insertion site length: correlation between preoperative MRI and intra-operative measurements. Knee Surg Sports Traumatol Arthrosc 24:2787–2793

    PubMed  Google Scholar 

  47. Xerogeanes JW, Mitchell PM, Karasev PA, Kolesov IA, Romine SE (2013) Anatomic and morphological evaluation of the quadriceps tendon using 3-dimensional magnetic resonance imaging reconstruction: applications for anterior cruciate ligament autograft choice and procurement. Am J Sports Med 41:2392–2399

    PubMed  Google Scholar 

  48. Zakko P, van Eck CF, Guenther D, Irrgang JJ, Fu FH (2017) Can we predict the size of frequently used autografts in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 25:3704–3710

    PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Institutional Review Board of our institution (STUDY19100047).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, S., Rothrauff, B.B., Taguchi, M. et al. Preoperative ultrasound predicts the intraoperative diameter of the quadriceps tendon autograft more accurately than preoperative magnetic resonance imaging for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 30, 52–60 (2022). https://doi.org/10.1007/s00167-020-06408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06408-4

Keywords

Navigation