Skip to main content

Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: a systematic review

Abstract

Purpose

To improve outcomes of anterior cruciate ligament reconstruction (ACLR), it is important to understand the reasons for failure of this procedure. This systematic review was performed to identify current failure modes of ACLR.

Methods

A systematic search was performed using PubMed, EMBASE, Cochrane, and annual registries for ACLR failures. Studies were included when failure modes were reported (I) of ≥ 10 patients and (II) at a minimum of two-year follow-up. Modes of failure were also compared between different graft types and in femoral tunnel positions.

Results

This review included 24 cohort studies and 4 registry-based studies (1 level I, 1 level II, 10 level III, and 16 level IV studies). Overall, a total of 3657 failures were identified. The most common single failure mode of ACLR was new trauma (38%), followed by technical errors (22%), combined causes (i.e. multiple failure mechanisms; 19%), and biological failures (i.e. failure due to infection or laxity without traumatic or technical considerations; 8%). Technical causes also played a contributing role in 17% of all failures. Femoral tunnel malposition was the most common cause of technical failure (63%). When specifically looking at the bone–patellar tendon–bone (BPTB) or hamstring (HT) autografts, trauma was the most common failure mode in both, whereas biological failure was more pronounced in the HT group (4% vs. 22%, respectively). Technical errors were more common following transtibial as compared to anteromedial portal techniques (49% vs. 26%).

Conclusion

Trauma is the single leading cause of ACLR failure, followed by technical errors, and combined causes. Technical errors seemed to play a major or contributing role in large part of reported failures, with femoral tunnel malposition being the leading cause of failure. Trauma was also the most common failure mode in both BPTB and HT grafts. Technical errors were a more common failure mode following transtibial than anteromedial portal technique.

Level of evidence

IV.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Ahmed I, Salmon L, Roe J, Pinczewski L (2017) The long-term clinical and radiological outcomes in patients who suffer recurrent injuries to the anterior cruciate ligament after reconstruction. Bone Jt J 99B:337–343

    Google Scholar 

  2. 2.

    Akhtar MA, Bhattacharya R, Ohly N, Keating JF (2011) Revision ACL reconstruction—causes of failure and graft choices. Br J Sports Med 45:A15–A16

    Google Scholar 

  3. 3.

    Akhtar MA, Bhattacharya R, Keating JF (2016) Generalised ligamentous laxity and revision ACL surgery: Is there a relation? Knee 23:1148–1153

    Google Scholar 

  4. 4.

    Anand BS, Feller JA, Richmond AK, Webster KE (2016) Return-to-sport outcomes after revision anterior cruciate ligament reconstruction surgery. Am J Sports Med 44:580–584

    Google Scholar 

  5. 5.

    Balazs GC, Grimm PD, Donohue MA et al (2016) Revision anterior cruciate ligament reconstruction in military personal. J Knee Surg 1:285–305

    Google Scholar 

  6. 6.

    Boyle C, Pagoti R, Eng KH et al (2019) Revision ACL reconstruction with autograft: long-term functional outcomes and influencing factors. Eur J Orthop Surg Traumatol 29:157–161

    Google Scholar 

  7. 7.

    Cain EL Jr, Biggers MD, Beason DP et al (2017) Comparison of anterior cruciate ligament graft isometry between paired femoral and tibial tunnels. J Knee Surg 30:960–964

    Google Scholar 

  8. 8.

    Chen JL, Allen CR, Stephens TE et al (2013) Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: a MARS cohort study. Am J Sports Med 41:1571–1578

    Google Scholar 

  9. 9.

    Chen Y, Chua KHZ, Singh A et al (2015) Outcome of single-bundle hamstring anterior cruciate ligament reconstruction using the anteromedial versus the transtibial technique: a systematic review and meta-analysis. Arthroscopy 31:1784–1794

    Google Scholar 

  10. 10.

    Chen H, Tie K, Qi Y et al (2017) Anteromedial versus transtibial technique in single-bundle autologous hamstring ACL reconstruction: a meta-analysis of prospective randomized controlled trials. J Orthop Surg Res 12:167

    Google Scholar 

  11. 11.

    Ciccotti MC, Secrist E, Tjoumakaris F et al (2017) Anatomic anterior cruciate ligament reconstruction via independent tunnel drilling: a systematic review of randomized controlled trials comparing patellar tendon and hamstring autografts. Arthroscopy 33:1062–1071.e5

    Google Scholar 

  12. 12.

    Cristiani R, Sarakatsianos V, Engström B et al (2019) Increased knee laxity with hamstring tendon autograft compared to patellar tendon autograft: a cohort study of 5462 patients with primary anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27:381–388

    Google Scholar 

  13. 13.

    Di Benedetto P, Di Benedetto E, Fiocchi A et al (2016) Causes of failure of anterior cruciate ligament reconstruction and revision surgical strategies. Knee Surg Relat Res 28:319–324

    Google Scholar 

  14. 14.

    Dini F, Tecame A, Ampollini A et al (2019) Multiple ACL revision: failure analysis and clinical outcomes. J Knee Surg. https://doi.org/10.1055/s-0039-3400741

    Article  Google Scholar 

  15. 15.

    Engebretsen L, Benum P, Fasting O et al (1990) A prospective, randomized study of three surgical techniques for treatment of acute ruptures of the anterior cruciate ligament. Am J Sports Med 18:585–590

    CAS  Google Scholar 

  16. 16.

    Gillquist J, Andersson M, Odensten L, Good J (1989) Surgical or non-surgical treatment of acute rupture of the anterior cruciate ligament. A randomized study with long-term follow-up. J Bone Jt Surg 71:965–974

    Google Scholar 

  17. 17.

    Grassi A, Carulli C, Innocenti M et al (2018) New trends in anterior cruciate ligament reconstruction: a systematic review of national surveys of the last 5 years. Joints 6:177–187

    Google Scholar 

  18. 18.

    Hettrich CM, Dunn WR, Reinke EK et al (2013) The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med 41:1534–1540

    Google Scholar 

  19. 19.

    Iio K, Tsuda E, Tsukada H et al (2017) Characteristics of elongated and ruptured anterior cruciate ligament grafts: An analysis of 21 consecutive revision cases. Asia-Pac J Sport Med Arthrosc Rehabil Technol 8:1–7

    Google Scholar 

  20. 20.

    Inderhaug E, Raknes S, Østvold T et al (2017) Increased revision rate with posterior tibial tunnel placement after using the 70-degree tibial guide in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 25:152–158

    Google Scholar 

  21. 21.

    Jaecker V, Zapf T, Naendrup JH et al (2018) Differences between traumatic and non-traumatic causes of ACL revision surgery. Arch Orthop Trauma Surg 138:1265–1272

    Google Scholar 

  22. 22.

    Johnson WR, Makani A, Wall AJ et al (2015) Patient outcomes and predictors of success after revision anterior cruciate ligament reconstruction. Orthop J Sport Med 3:1–7

    Google Scholar 

  23. 23.

    Kaeding CC, Aros B, Pedroza A et al (2011) Allograft versus autograft anterior cruciate ligament reconstruction: Predictors of failure from a moon prospective longitudinal cohort. Sports Health 3:73–81

    Google Scholar 

  24. 24.

    Kamath GVG, Redfern JCJ, Greis PEP, Burks RRT (2011) Revision anterior cruciate ligament reconstruction. Am J Sports Med 39:199–217

    Google Scholar 

  25. 25.

    Kim HS, Seon JK, Jo AR (2013) Current trends in anterior cruciate ligament reconstruction. Knee Surg Relat Res 25:165–173

    Google Scholar 

  26. 26.

    Kuršumović K, Charalambous CP (2016) Graft salvage following infected anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Bone Jt J 98-B:608–615

    Google Scholar 

  27. 27.

    Lee DW, Kim JG, Cho SI, Kim DH (2019) Clinical outcomes of isolated revision anterior cruciate ligament reconstruction or in combination with anatomic anterolateral ligament reconstruction. Am J Sports Med 47:324–333

    Google Scholar 

  28. 28.

    Lefevre N, Klouche S, Mirouse G et al (2017) Return to sport after primary and revision anterior cruciate ligament reconstruction: a prospective comparative study of 552 patients from the FAST cohort. Am J Sports Med 45:34–41

    Google Scholar 

  29. 29.

    Legnani C, Peretti G, Borgo E et al (2017) Revision anterior cruciate ligament reconstruction with ipsi- or contralateral hamstring tendon grafts. Eur J Orthop Surg Traumatol 27:533–537

    Google Scholar 

  30. 30.

    Lind M, Menhert F, Pedersen AB (2009) The first results from the Danish ACL reconstruction registry: epidemiologic and 2 year follow-up results from 5818 knee ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 17:117–124

    Google Scholar 

  31. 31.

    Lynch TS, Parker RD, Patel RM et al (2015) The impact of the multicenter orthopaedic outcomes network (MOON) research on anterior cruciate ligament reconstruction and orthopaedic practice. J Am Acad Orthop Surg 23:154–163

    Google Scholar 

  32. 32.

    Magnussen RA, Taylor DC, Toth AP, Garrett WE (2012) ACL graft failure location differs between allografts and autografts. Sport Med Arthrosc Rehabil Ther Technol 4:22

    Google Scholar 

  33. 33.

    Magnussen RA, Trojani C, Granan LP et al (2015) Patient demographics and surgical characteristics in ACL revision: a comparison of French, Norwegian, and North American cohorts. Knee Surg Sports Traumatol Arthrosc 23:2339–2348

    Google Scholar 

  34. 34.

    Mahmoud SSS, Odak S, Coogan S, McNicholas MJ (2014) A prospective study to assess the outcomes of revision anterior cruciate ligament reconstruction. Int Orthop 38:1489–1494

    Google Scholar 

  35. 35.

    MARS Study Group (2016) The development and early to midterm findings of the multicenter revision anterior cruciate ligament study. J Knee Surg 29:528–532

    Google Scholar 

  36. 36.

    Matava MJ, Arciero RA, Baumgarten KM et al (2015) Multirater agreement of the causes of anterior cruciate ligament reconstruction failure: a radiographic and video analysis of the MARS cohort. Am J Sports Med 43:310–319

    Google Scholar 

  37. 37.

    Ménétrey J, Duthon VB, Laumonier T, Fritschy D (2008) “Biological failure” of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc 16:224–231

    Google Scholar 

  38. 38.

    Mengdi SuM, Jia X, Zhang Z et al (2019) Medium-term (least 5 years) comparative outcomes in anterior cruciate ligament reconstruction using 4SHG, allograft, and LARS ligament. Clin J Sport Med. https://doi.org/10.1097/JSM.0000000000000730

    Article  Google Scholar 

  39. 39.

    Mirouse G, Rousseau R, Casabianca L et al (2016) Return to sports and functional results after revision anterior cruciate ligament reconstruction by fascia lata autograft. Orthop Traumatol Surg Res 102:863–866

    CAS  Google Scholar 

  40. 40.

    Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Google Scholar 

  41. 41.

    Mohtadi N, Barber R, Chan D et al (2016) Complications and adverse events of a randomized clinical trial comparing 3 graft types for ACL reconstruction. Clin J Sport Med 26:182–189

    Google Scholar 

  42. 42.

    Morgan JA, Dahm D, Levy B et al (2012) Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg 25:361–368

    Google Scholar 

  43. 43.

    Nagaraj R, Kumar MN (2019) Revision anterior cruciate ligament reconstruction in the nonathlete population. Indian J Orthop 53:154–159

    Google Scholar 

  44. 44.

    Obremskey WT, Pappas N, Attallah-Wasif E et al (2005) Level of evidence in orthopaedic journals. J Bone Jt Surg Ser A 87:2632–2638

    Google Scholar 

  45. 45.

    Parkinson B, Robb C, Thomas M et al (2017) Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 45:1529–1536

    Google Scholar 

  46. 46.

    Pascual-Garrido C, Carbo L, Makino A (2014) Revision of anterior cruciate ligament reconstruction with allografts in patients younger than 40 years old: A 2 to 4 year results. Knee Surg Sports Traumatol Arthrosc 22:1106–1111

    Google Scholar 

  47. 47.

    Prentice HA, Lind M, Mouton C et al (2018) Patient demographic and surgical characteristics in anterior cruciate ligament reconstruction: a description of registries from six countries. Br J Sports Med 52:716–722

    Google Scholar 

  48. 48.

    Rahardja R, Zhu M, Love H et al (2019) Rates of revision and surgeon-reported graft rupture following ACL reconstruction: early results from the New Zealand ACL Registry. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05773-z

    Article  Google Scholar 

  49. 49.

    Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind MC (2013) Increased risk of revision after anteromedial compared with transtibial drilling of the femoral tunnel during primary anterior cruciate ligament reconstruction: Results from the danish knee ligament reconstruction register. Arthroscopy 29:98–105

    Google Scholar 

  50. 50.

    Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M (2014) Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the danish registry of knee ligament reconstruction. Am J Sports Med 42:278–284

    Google Scholar 

  51. 51.

    Redler A, Iorio R, Monaco E et al (2018) Revision anterior cruciate ligament reconstruction with hamstrings and extra-articular tenodesis: a mid- to long-term clinical and radiological study. Arthroscopy 34:3204–3213

    Google Scholar 

  52. 52.

    Reverte-Vinaixa MM, Minguell J, Joshi N et al (2014) Revision anterior cruciate ligament reconstruction using tibial or hamstring tendon allografts. J Orthop Surg 22:60–64

    Google Scholar 

  53. 53.

    Robin BN, Jani SS, Marvil SC et al (2015) Advantages and disadvantages of transtibial, anteromedial portal, and outside-in femoral tunnel drilling in single-bundle anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 31:1412–1417

    Google Scholar 

  54. 54.

    Rousseau R, Labruyere C, Kajetanek C et al (2019) Complications after anterior cruciate ligament reconstruction and their relation to the type of graft: a prospective study of 958 cases. Am J Sports Med 47:2543–2549

    Google Scholar 

  55. 55.

    Schlumberger M, Schuster P, Schulz M et al (2017) Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc 25:1535–1541

    Google Scholar 

  56. 56.

    Slim K, Nini E, Forestier D et al (2003) Methodological index for non-randomized studies (Minors): development and validation of a new instrument. ANZ J Surg 73:712–716

    Google Scholar 

  57. 57.

    Steadman JR, Matheny LM, Jason MP et al (2015) Patient-centered outcomes and revision rate in patients undergoing acl reconstruction using bone-patellar tendon-bone autograft compared with bone-patellar tendon-bone allograft: a matched case-control study. Arthroscopy 31:1–7

    Google Scholar 

  58. 58.

    Takazawa Y, Ikeda H, Saita Y et al (2015) Case series: Revision anterior cruciate ligament reconstructions using patellar tendon autografts. Knee 22:569–573

    Google Scholar 

  59. 59.

    Trojani C, Sbihi A, Djian P et al (2011) Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc 19:196–201

    Google Scholar 

  60. 60.

    Vališ P, Sklenský J, Repko M et al (2014) Most frequent causes of autologous graft failure in anterior cruciate ligament replacement. Acta Chir Orthop Traumatol Cech 81:371–379

    Google Scholar 

  61. 61.

    Vap AR, Persson A, Fenstad AM et al (2019) Re-revision anterior cruciate ligament recoonstruction: an evaluation from the Norwergina knee ligament registry. Arthroscopy 35:1695–1701

    Google Scholar 

  62. 62.

    Waltz RA, Solomon DJ, Provencher MT (2014) A radiographic assessment of failed anterior cruciate ligament reconstruction: can magnetic resonance imaging predict graft integrity? Am J Sports Med 42:1652–1660

    Google Scholar 

  63. 63.

    Wang C, Lee YH, Siebold R (2014) Recommendations for the management of septic arthritis after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 22:2136–2144

    Google Scholar 

  64. 64.

    Webster KE, Feller JA, Leigh WB, Richmond AK (2014) Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med 42:641–647

    Google Scholar 

  65. 65.

    Wiggins AJ, Grandhi RK, Schneider DK et al (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44:1861–1876

    Google Scholar 

  66. 66.

    Wright RW, Huston LJ, Spindler KP et al (2010) Descriptive epidemiology of the multicenter ACL revision study (MARS) cohort. Am J Sports Med 38:1979–1986

    Google Scholar 

  67. 67.

    Wright RW, Gill CS, Chen L et al (2012) Outcome of revision anterior cruciate ligament reconstruction: a systematic review. J Bone Jt Surg 94:531–536

    Google Scholar 

  68. 68.

    Yabroudi MA, Björnsson H, Lynch AD et al (2016) Predictors of revision surgery after primary anterior cruciate ligament reconstruction. Orthop J Sport Med 4:1–7

    Google Scholar 

  69. 69.

    Yoon KH, Kim JS, Park SY, Park SE (2018) The influence of segond fracture on outcomes after anterior cruciate ligament reconstruction. Arthroscopy 34:1900–1906

    Google Scholar 

Download references

Funding

No funding has been received for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harmen D. Vermeijden.

Ethics declarations

Conflict of interest

Gregory S. DiFelice declares he is a paid consultant and receives research grants from Arthrex (Naples, FL, USA). Gino M.M.J Kerkhoffs declares that the Department of Orthopedic Surgery of the Amsterdam University Medical Centers received an unrestricted research Grant from Arthrex (Naples, FL, USA).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vermeijden, H.D., Yang, X.A., van der List, J.P. et al. Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 28, 3666–3675 (2020). https://doi.org/10.1007/s00167-020-06160-9

Download citation

Keywords

  • Failure modes
  • Anterior cruciate ligament
  • Reconstruction
  • Traumatic
  • Biological
  • Technical
  • Systematic review