Skip to main content

Anterior cruciate ligament bundle insertions vary between ACL-rupture and non-injured knees

Abstract

Purpose

The present study aimed to investigate the three-dimensional topographic anatomy of the anterior cruciate ligament (ACL) bundle attachment in both ACL-rupture and ACL-intact patients who suffered a noncontact knee injury and identify potential differences.

Methods

Magnetic resonance images of 90 ACL-rupture knees and 90 matched ACL-intact knees, who suffered a noncontact knee injury, were used to create 3D ACL insertion models.

Results

In the ACL-rupture knees, the femoral origin of the anteromedial (AM) bundle was 24.5 ± 9.0% posterior and 45.5 ± 10.5% proximal to the flexion–extension axis (FEA), whereas the posterolateral (PL) bundle origin was 35.5 ± 12.5% posterior and 22.4 ± 10.3% distal to the FEA. In ACL-rupture knees, the tibial insertion of the AM-bundle was 34.3 ± 4.6% of the tibial plateau depth and 50.7 ± 3.5% of the tibial plateau width, whereas the PL-bundle insertion was 47.5 ± 4.1% of the tibial plateau depth and 56.9 ± 3.4% of the tibial plateau width. In ACL-intact knees, the origin of the AM-bundle was 17.5 ± 9.1% posterior (p < 0.01) and 42.3 ± 10.5% proximal (n.s.) to the FEA, whereas the PL-bundle origin was 32.1 ± 11.1% posterior (n.s.) and 16.3 ± 9.4% distal (p < 0.01) to the FEA. In ACL-intact knees, the insertion of the AM-bundle was 34.4 ± 6.6% of the tibial plateau depth (n.s.) and 48.1 ± 4.6% of the tibial plateau width (n.s.), whereas the PL-bundle insertion was 42.7 ± 5.4% of the tibial plateau depth (p < 0.01) and 57.1 ± 4.8% of the tibial plateau width (n.s.).

Conclusion

The current study revealed variations in the three-dimensional topographic anatomy of the native ACL between ACL-rupture and ACL-intact knees, which might help surgeons who perform anatomical double-bundle reconstruction surgery.

Level of evidence

III.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and material

All data generated or analysed during this study are included in this published article.

References

  1. 1.

    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21

    CAS  PubMed  Google Scholar 

  2. 2.

    Beynnon BD, Hall JS, Sturnick DR, DeSarno MJ, Gardner-Morse M, Tourville TW et al (2014) Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. Am J Knee Surg 42:1039–1048

    Google Scholar 

  3. 3.

    Burnham JM, Malempati CS, Carpiaux A, Ireland ML, Johnson DL (2017) Anatomic femoral and tibial tunnel placement during anterior cruciate ligament reconstruction: anteromedial portal all-inside and outside-in techniques. Arthrosc Tech 6:e275–e282

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Cohen SB, VanBeek C, Starman JS, Armfield D, Irrgang JJ, Fu FH (2009) MRI measurement of the 2 bundles of the normal anterior cruciate ligament. Orthopedics 32:9–16

    Google Scholar 

  5. 5.

    Colombet P, Robinson J, Christel P, Franceschi J-P, Djian P, Bellier G et al (2006) Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy 22:984–992

    PubMed  Google Scholar 

  6. 6.

    Daggett M, Ockuly AC, Cullen M, Busch K, Lutz C, Imbert P et al (2016) Femoral origin of the anterolateral ligament: an anatomic analysis. Arthroscopy 32:835–841

    PubMed  Google Scholar 

  7. 7.

    Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34:1240–1246

    PubMed  Google Scholar 

  8. 8.

    Dimitriou D, Wang Z, Zou D, Tsai TY, Helmy N (2019) The femoral footprint position of the anterior cruciate ligament might be a predisposing factor to a noncontact anterior cruciate ligament rupture. Am J Sports Med 47:3365–3372

    PubMed  Google Scholar 

  9. 9.

    Eckhoff D, Hogan C, DiMatteo L, Robinson M, Bach J (2007) Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop Relat Res 461:238–244

    PubMed  Google Scholar 

  10. 10.

    Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S et al (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Jt Surg Am 92:1418–1426

    Google Scholar 

  11. 11.

    Hodel S, Kabelitz M, Tondelli T, Vlachopoulos L, Sutter R, Fucentese SF (2019) Introducing the lateral femoral condyle index as a risk factor for anterior cruciate ligament injury. Am J Sports Med 47:2420–2426

    PubMed  Google Scholar 

  12. 12.

    Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268

    Google Scholar 

  13. 13.

    Iriuchishima T, Ingham SJ, Tajima G, Horaguchi T, Saito A, Tokuhashi Y et al (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:1226–1231

    PubMed  Google Scholar 

  14. 14.

    Järvelä T (2007) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 15:500–507

    PubMed  Google Scholar 

  15. 15.

    Kennedy MI, Claes S, Fuso FAF, Williams BT, Goldsmith MT, Turnbull TL et al (2015) The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med 43:1606–1615

    PubMed  Google Scholar 

  16. 16.

    Kernkamp WA, Varady NH, Li JS, Tsai TY, Asnis PD, van Arkel ERA et al (2018) An in vivo prediction of anisometry and strain in anterior cruciate ligament reconstruction—a combined magnetic resonance and dual fluoroscopic imaging analysis. Arthroscopy 34:1094–1103

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kilinc BE, Kara A, Oc Y, Celik H, Camur S, Bilgin E et al (2016) Transtibial vs anatomical single bundle technique for anterior cruciate ligament reconstruction: a retrospective cohort study. Int J Surg 29:62–69

    PubMed  Google Scholar 

  18. 18.

    Kim TK, Phillips M, Bhandari M, Watson J, Malhotra R (2017) What differences in morphologic features of the knee exist among patients of various races? a systematic review. Clin Orthop Relat Res 475:170–182

    CAS  PubMed  Google Scholar 

  19. 19.

    Kopf S, Forsythe B, Wong AK, Tashman S, Anderst W, Irrgang JJ et al (2010) Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Jt Surg Am 92:1427–1431

    Google Scholar 

  20. 20.

    Lee JK, Lee S, Seong SC, Lee MC (2015) Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 23:2297–2305

    PubMed  Google Scholar 

  21. 21.

    Lorenz S, Elser F, Mitterer M, Obst T, Imhoff AB (2009) Radiologic evaluation of the insertion sites of the 2 functional bundles of the anterior cruciate ligament using 3-dimensional computed tomography. Am J Sports Med 37:2368–2376

    PubMed  Google Scholar 

  22. 22.

    Luites JW, Wymenga AB, Blankevoort L, Kooloos JG (2007) Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc 15:1422–1431

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Markolf KL, Hame S, Hunter DM, Oakes DA, Zoric B, Gause P et al (2002) Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. J Orthop Res 20:1016–1024

    PubMed  Google Scholar 

  24. 24.

    McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA et al (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Jt Surg Am 93:1310–1317

    Google Scholar 

  25. 25.

    Miranda DL, Rainbow MJ, Leventhal EL, Crisco JJ, Fleming BC (2010) Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J Biomech 43:1623–1626

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Muneta T, Koga H, Mochizuki T, Ju Y-J, Hara K, Nimura A et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 23:618–628

    PubMed  Google Scholar 

  27. 27.

    Park JS, Nam DC, Kim DH, Kim HK, Hwang SC (2012) Measurement of knee morphometrics using MRI: a comparative study between ACL-injured and non-injured knees. Knee Surg Relat Res 24:180

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Petersen W, Tretow H, Weimann A, Herbort M, Fu FH, Raschke M et al (2007) Biomechanical evaluation of two techniques for double-bundle anterior cruciate ligament reconstruction: one tibial tunnel versus two tibial tunnels. Am J Sports Med 35:228–234

    PubMed  Google Scholar 

  29. 29.

    Pfeiffer TR, Burnham JM, Hughes JD, Kanakamedala AC, Herbst E, Popchak A et al (2018) An increased lateral femoral condyle ratio is a risk factor for anterior cruciate ligament injury. J Bone Jt Surg Am 100:857–864

    Google Scholar 

  30. 30.

    Pietrini SD, Ziegler CG, Anderson CJ, Wijdicks CA, Westerhaus BD, Johansen S et al (2011) Radiographic landmarks for tunnel positioning in double-bundle ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 19:792–800

    PubMed  Google Scholar 

  31. 31.

    Simon R, Everhart J, Nagaraja H, Chaudhari A (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sturnick DR, Argentieri EC, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW et al (2014) A decreased volume of the medial tibial spine is associated with an increased risk of suffering an anterior cruciate ligament injury for males but not females. J Orthop Res 32:1451–1457

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sturnick DR, Van Gorder R, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW et al (2014) Tibial articular cartilage and meniscus geometries combine to influence female risk of anterior cruciate ligament injury. J Orthop Res 32:1487–1494

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Suomalainen P, Järvelä T, Paakkala A, Kannus P, Järvinen M (2012) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective randomized study with 5-year results. Am J Sports Med 40:1511–1518

    PubMed  Google Scholar 

  35. 35.

    Takahashi M, Doi M, Abe M, Suzuki D, Nagano A (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34:787–792

    PubMed  Google Scholar 

  36. 36.

    Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Toh S (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13:122–129

    PubMed  Google Scholar 

  37. 37.

    von Eisenhart-Rothe R, Bringmann C, Siebert M, Reiser M, Englmeier KH, Eckstein F et al (2004) Femoro-tibial and menisco-tibial translation patterns in patients with unilateral anterior cruciate ligament deficiency–a potential cause of secondary meniscal tears. J Orthop Res 22:275–282

    Google Scholar 

  38. 38.

    Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW et al (2014) Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med 42:1796–1805

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wu C, Noorani S, Vercillo F, Woo S (2009) Tension patterns of the anteromedial and posterolateral grafts in a double-bundle anterior cruciate ligament reconstruction. J Orthop Res 27:879–884

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666

    PubMed  Google Scholar 

  41. 41.

    Zantop T, Wellmann M, Fu FH, Petersen W (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36:65–72

    PubMed  Google Scholar 

  42. 42.

    Zavras TD, Race A, Amis AA (2005) The effect of femoral attachment location on anterior cruciate ligament reconstruction: graft tension patterns and restoration of normal anterior-posterior laxity patterns. Knee Surg Sports Traumatol Arthrosc 13:92–100

    PubMed  Google Scholar 

Download references

Funding

This project was sponsored by the National Natural Science Foundation of China (31771017, 31972924), the Science and Technology Commission of Shanghai Municipality (16441908700), the Innovation Research Plan supported by Shanghai Municipal Education Commission (ZXWF082101), the National Key R&D Program of China (2017YFC0110700, 2018YFF0300504, and 2019YFC0120600), the Natural Science Foundation of Shanghai (18ZR1428600), and the Interdisciplinary Program of Shanghai Jiao Tong University (ZH2018QNA06, YG2017MS09).

Author information

Affiliations

Authors

Contributions

DD: substantial contributions to research design, the acquisition, analysis, and interpretation of data, drafting the paper. DZ: substantial contributions to research design, acquisition, analysis and interpretation of data. ZW: substantial contributions to research design, acquisition, analysis and interpretation of data. NH: Critical revision and approval of the final version. T-YT: substantial contributions to research design, acquisition, analysis, and interpretation of data. Critical review and approval of the final version.

Corresponding author

Correspondence to Tsung-Yuan Tsai.

Ethics declarations

Conflict of interest

The authors of this manuscript have nothing to disclose that would bias our work.

Ethical approval

Ethikkommission Nordwest- und Zentralschweiz: 2018-01410.

Code availability

AMIRA 6.5, FEI SVG, Thermo Fisher Scientific, Hillsboro, Oregon, USA; SPSS Inc., Chicago, Illinois; MATLAB, MathWorks, Natick, MA, USA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dimitriou, D., Zou, D., Wang, Z. et al. Anterior cruciate ligament bundle insertions vary between ACL-rupture and non-injured knees. Knee Surg Sports Traumatol Arthrosc 29, 1164–1172 (2021). https://doi.org/10.1007/s00167-020-06122-1

Download citation

Keywords

  • Anterior cruciate ligament
  • Anteromedial bundle
  • Posterolateral bundle
  • Tibial insertion
  • Double-bundle reconstruction
  • Tibial footprint
  • Double-bundle
  • Femoral origin