Skip to main content
Log in

Morphology of the resident’s ridge, and the cortical thickness in the lateral wall of the femoral intercondylar notch correlate with the morphological variations of the Blumensaat’s line

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to reveal the morphological correlation between the lateral wall of femoral intercondylar notch and the Blumensaat’s line.

Methods

Forty-one non-paired human cadaveric knees were included in this study (23 female, 18 male: median age 83). Knees were resected, and 3 dimensional computed tomography (3D-CT) was performed. In the axial CT image, bony protrusion (resident’s ridge) and cortical thickness in the lateral wall of the femoral intercondylar notch were detected. The length between the top of the ridge, or the most anterior, middle, and most posterior border of cortical thickness and posterior femoral condylar line was measured. Following Iriuchishima’s classification, the morphology of the Blumensaat’s line was classified into straight and hill types (small and large hill types). In the hill types, the length between the hilltop and the posterior border of the Blumensaat’s line or the posterior border of the femoral condyle was evaluated. Statistical correlation was calculated between the top of the ridge location, cortical thickness location in the notch, and hilltop location.

Results

There were 7 straight type knees and 34 hill type knees (9 small hill type knees and 25 large hill type knees). Only the hill types of knees were evaluated. The top of the ridge, anterior margin, middle, and posterior border of cortical thickness in the lateral wall of the femoral intercondylar notch existed at 61.8 ± 4.6%, 58.3 ± 12.3%, 42.1 ± 7.9%, and 25.5 ± 5.4% from the posterior condylar line, respectively. The hilltop existed at 24.9 ± 5.9% and 30.7 ± 5.0%, from the posterior border of the Blumensaat’s line and from the posterior border of the femoral condyle, respectively. Significant correlation was observed between resident’s ridge top, cortical thickness location and hilltop location.

Conclusion

In all cadaveric knees, cortical thickness was detected in the lateral wall of the femoral intercondylar notch. The resident’s ridge and cortical thickness location had significant correlation with the hill location in the Blumensaat’s line, indicating a continuation of the cortical bone from the posterior cortex of the femoral shaft via the hilltop of the Blumensaat’s line to the cortical thickness in the lateral wall of the femoral intercondylar notch. For clinical relevance, hilltop location in the Blumensaat’s line is a new bony landmark in anterior cruciate ligament surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

References

  1. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–22

    CAS  PubMed  Google Scholar 

  2. Davis TJ, Shelbourne KD, Klootwyk TE (1999) Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7:209–214

    Article  CAS  Google Scholar 

  3. Farrow LD, Chen MR, Cooperman DR, Goodfellow DB, Robbin MS (2008) Radiographic classification of the femoral intercondylar notch posterolateral rim. Arthroscopy 24:1109–1114

    Article  Google Scholar 

  4. Farrow LD, Gillespie RJ, Victoroff BN, Cooperman DR (2008) Radiographic location of the lateral intercondylar ridge: its relationship to Blumensaat’s line. Am J Sports Med 36(10):2002–2006

    Article  Google Scholar 

  5. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225

    Article  Google Scholar 

  6. Hutchinson MR, Ash SA (2003) Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy 19(9):931–935

    Article  Google Scholar 

  7. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) Blumensaat’s line is not always straight: morphological variations of the lateral wall of the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 24:2752–2757

    Article  Google Scholar 

  8. Iriuchishima T, Tajima G, Shirakura K, Morimoto Y, Kubomura T, Horaguchi T, Fu FH (2011) In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 131:1085–1090

    Article  Google Scholar 

  9. Iriuchishima T, Ingham SJ, Tajima G, Horaguchi T, Saito A, Tokuhashi Y, Van Houten AH, Aerts MM, Fu FH (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:1226–1231

    Article  Google Scholar 

  10. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres. Knee Surg Sports Traumatol Arthrosc 24:254–259

    Article  Google Scholar 

  11. Iriuchishima T, Goto B, Ryu K, Fu FH (2019) The Blumensaat’s line morphology influences to the femoral tunnel position in anatomical ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:3638–3643

    Article  Google Scholar 

  12. Iwasaki K, Inoue M, Kasahara Y, Tsukuda K, Kawahara H, Yokota I, Kondo E, Iwasaki N, Yasuda K (2019) Inclination of Blumensaat’s line influences on the accuracy of the quadrant method in evaluation for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05619-8

    Article  PubMed  Google Scholar 

  13. Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction. Part 2: clinical application of surgical technique. Am J Sports Med 39:2016–2026

    Article  Google Scholar 

  14. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36:1675–1687

    Article  Google Scholar 

  15. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17:213–219

    Article  Google Scholar 

  16. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39:108–1013

    Article  Google Scholar 

  17. Luites JW, Wymenga AB, Blankevoort L et al (2007) Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc 15:1422–1431

    Article  Google Scholar 

  18. Muneta T, Koga H, Mochizuki T et al (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23:618–628

    Article  Google Scholar 

  19. Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25:69–72

    Article  CAS  Google Scholar 

  20. Norman D, Metcalfe AJ, Barlow T, Hutchinson CE, Thompson PJ, Spalding TJ, Williams MA (2017) Cortical bony thickening of the lateral intercondylar wall: the functional attachment of the anterior cruciate ligament. Am J Sports Med 45(2):394–402

    Article  Google Scholar 

  21. Purnell ML, Larson AI, Clancy W (2008) Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. Am J Sports Med 36(11):2083–2090

    Article  Google Scholar 

  22. Seyahi A, Atalar AC, Koyuncu LO, Cinar BM, Demirhan M (2006) Blumensaat line and patellar height. Acta Orthop Traumatol Turc 40:240–247

    PubMed  Google Scholar 

  23. Shino K, Suzuki T, Iwahashi T, Mae T, Nakamura N, Nakata K, Nakagawa S (2010) The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(9):1164–1168

    Article  Google Scholar 

  24. Siebold R, Ellert T, Metz S, Mets J (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy 24:585–592

    Article  Google Scholar 

  25. Siebold R, Ellert T, Metz S, Metz J (2008) Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy 24:154–161

    Article  Google Scholar 

  26. Stijak L, Randonjic V, Nikolic V, Blagojevic Z, Aksic M, Filipovic B (2009) Correlation between the morphometric parameters of the anterior cruciate ligament and the intercondylar width: gender and age difference. Knee Surg Sports Traumatol Arthrosc 17:812–817

    Article  Google Scholar 

  27. Tsukada S, Fujishiro H, Watanabe K, Nimura A, Mochizuki T, Mahakkanukrauh P, Yasuda K, Akita K (2014) Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med 42(5):1110–1117

    Article  Google Scholar 

  28. van Eck CF, Kopf S, van Dijk CN, Fu FH, Tashman S (2011) Comparison of 3-dimensional notch volume between subjects with and subjects without anterior cruciate ligament rupture. Arthroscopy 27:1235–1241

    Article  Google Scholar 

  29. van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH (2010) Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 18:1257–1262

    Article  Google Scholar 

  30. Wolters F, Vrooijink SH, Van Eck CF, Fu FH (2011) Does notch size predict ACL insertion site size? Knee Surg Sports Traumatol Arthrosc 19:S17–S21

    Article  Google Scholar 

  31. Wu E, Chen M, Cooperman D, Victoroff B, Goodfellow D, Farrow LD (2011) No correlation of height or gender with anterior cruciate ligament footprint size. J Knee Surg 24:39–43

    Article  Google Scholar 

  32. Yahagi Y, Iriuchishima T, Horaguchi T, Suruga M, Tokuhashi Y, Aizawa S (2018) The importance of Blumensaat’s line morphology for accurate femoral ACL footprint evaluation using the quadrant method. Knee Surg Sports Traumatol Arthrosc 26:455–461

    Article  Google Scholar 

  33. Yasuda K, Kondo E, Ichiyama H, Tanabe Y, Tohyama H (2006) Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: comparisons among 3 different procedures. Arthroscopy 22:240–251

    Article  Google Scholar 

Download references

Funding

Funding

Funding support was existed on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Iriuchishima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the ethics committee of the Nihon University School of Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iriuchishima, T., Suruga, M., Yahagi, Y. et al. Morphology of the resident’s ridge, and the cortical thickness in the lateral wall of the femoral intercondylar notch correlate with the morphological variations of the Blumensaat’s line. Knee Surg Sports Traumatol Arthrosc 28, 2668–2674 (2020). https://doi.org/10.1007/s00167-020-05932-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-05932-7

Keywords

Navigation