Different effects of the lateral meniscus complete radial tear on the load distribution and transmission functions depending on the tear site



To compare the effect of the lateral meniscus (LM) complete radial tear at different tear sites on the load distribution and transmission functions.


A compressive load of 300 N was applied to the intact porcine knees (n = 30) at 15°, 30°, 60°, 90°, and 120° of flexion. The LM complete radial tears were created at the middle portion (group M), the posterior portion (group P), or the posterior root (group R) (n = 10, each group), and the same loading procedure was followed. Finally, the recorded three-dimensional paths were reproduced on the LM-removed knees. The peak contact pressure (contact area) in the lateral compartment and the calculated in situ force of the LM under the principle of superposition were compared among the four groups (intact, group M, group P, and group R).


At all the flexion angles, the peak contact pressure (contact area) was significantly higher (lower) after creating the LM complete radial tear as compared to that in the intact state (p < 0.01). At 120° of flexion, group R represented the highest peak contact pressure (lowest contact area), followed by group P and group M (p < 0.05). The results of the in situ force carried by the LM were similar to those of the tibiofemoral contact mechanics.


The detrimental effect of the LM complete radial tear on the load distribution and transmission functions was greatest in the posterior root tear, followed by the posterior portion tear and the middle portion tear in the deep-flexed position. Complete radial tars of the meniscus, especially at the posterior root, should be repaired to restore the biomechanical function.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Degree of freedom


Lateral meniscus




Universal force/moment sensor


  1. 1.

    Allaire R, Muriuki M, Gilbertson L, Harner CD (2008) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am 90(9):1922–1931

    PubMed  Google Scholar 

  2. 2.

    Andrews SH, Rattner JB, Abusara Z, Adesida A, Shrive NG, Ronsky JL (2014) Tie-fibre structure and organization in the knee menisci. J Anat 224(5):531–537

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Andrews SH, Rattner JB, Jamniczky HA, Shrive NG, Adesida AB (2015) The structural and compositional transition of the meniscal roots into the fibrocartilage of the menisci. J Anat 226(2):169–174

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Andrews SHJ, Adesida AB, Abusara Z, Shrive NG (2017) Current concepts on structure-function relationships in the menisci. Connect Tissue Res 58(3–4):271–281

    CAS  PubMed  Google Scholar 

  5. 5.

    Bachus KN, DeMarco AL, Judd KT, Horwitz DS, Brodke DS (2006) Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems. Med Eng Phys 28(5):483–488

    PubMed  Google Scholar 

  6. 6.

    Badlani JT, Borrero C, Golla S, Harner CD, Irrgang JJ (2013) The effects of meniscus injury on the development of knee osteoarthritis: data from the osteoarthritis initiative. Am J Sports Med 41(6):1238–1244

    PubMed  Google Scholar 

  7. 7.

    Bedi A, Kelly NH, Baad M, Fox AJ, Brophy RH, Warren RF, Maher SA (2010) Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am 92(6):1398–1408

    PubMed  Google Scholar 

  8. 8.

    Bedi A, Kelly NH, Baad M, Fox AJ, Ma Y, Warren RF, Maher SA (2012) Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthroscopy 28(3):372–381

    PubMed  Google Scholar 

  9. 9.

    Choi CJ, Choi YJ, Song IB, Choi CH (2011) Characteristics of radial tears in the posterior horn of the medial meniscus compared to horizontal tears. Clin Orthop Surg 3(2):128–132

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Clark CR, Ogden JA (1983) Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am 65(4):538–547

    CAS  PubMed  Google Scholar 

  11. 11.

    Debski RE, Yamakawa S, Musahl V, Fujie H (2017) Use of robotic manipulators to study diarthrodial joint function. J Biomech Eng 139:2

    Google Scholar 

  12. 12.

    Drewniak EI, Crisco JJ, Spenciner DB, Fleming BC (2007) Accuracy of circular contact area measurements with thin-film pressure sensors. J Biomech 40(11):2569–2572

    PubMed  Google Scholar 

  13. 13.

    Feucht MJ, Kühle J, Bode G, Mehl J, Schmal H, Südkamp NP, Niemeyer P (2015) Arthroscopic transtibial pullout repair for posterior medial meniscus root tears: a systematic review of clinical, radiographic, and second-look arthroscopic results. Arthroscopy 31(9):1808–1816

    PubMed  Google Scholar 

  14. 14.

    Fox AJ, Bedi A, Rodeo SA (2012) The basic science of human knee menisci: structure, composition, and function. Sports Health 4(4):340–351

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fujie H, Mabuchi K, Woo SL, Livesway GA, Arai S, Tsukamoto Y (1993) The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng 115(3):211–217

    CAS  PubMed  Google Scholar 

  16. 16.

    Fujie H, Livesay GA, Woo SL, Kashiwaguchi S, Blomstrom G (1995) The use of a universal force-moment sensor to determine in-situ forces in ligaments: a new methodology. J Biomech Eng 117(1):1–7

    CAS  PubMed  Google Scholar 

  17. 17.

    Fujie H, Livesay GA, Fujita M, Woo SL (1996) Forces and moments in six-DOF at the human knee joint: mathematical description for control. J Biomech 29(12):1577–1585

    CAS  PubMed  Google Scholar 

  18. 18.

    Fujie H, Sekito T, Orita A (2004) A novel robotic system for joint biomechanical tests: application to the human knee joint. J Biomech Eng 126(1):54–61

    PubMed  Google Scholar 

  19. 19.

    Geeslin AG, Cinitarese D, Turnbull TL, Dornan GJ, Fuso FA, LaPrade RF (2016) Influence of lateral meniscal posterior root avulsions and the meniscofemoral ligaments on tibiofemoral contact mechanics. Knee Surg Sports Traumatol Arthrosc 24(5):1469–1477

    PubMed  Google Scholar 

  20. 20.

    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

    CAS  PubMed  Google Scholar 

  21. 21.

    Guenther D, Rahnemai-Azar AA, Bell KM, Irarrázaval S, Fu FH, Musahl V, Debski RE (2017) The anterolateral capsule of the knee behaves like a sheet of fibrous tissue. Am J Sports Med 45(4):849–855

    PubMed  Google Scholar 

  22. 22.

    Jansson KS, Michalski MP, Smith SD, LaPrade RF, Wijdicks CA (2013) Tekscan pressure sensor output changes in the presence of liquid exposure. J Biomech 46(3):612–614

    PubMed  Google Scholar 

  23. 23.

    Jarraya M, Roemer FW, Englund M, Crema MD, Gale HI, Hayashi D, Katz JN, Guermazi A (2017) Meniscus morphology: does tear type matter? A narrative review with focus on relevance for osteoarthritis research. Semin Arthritis Rheum 46(5):552–561

    PubMed  Google Scholar 

  24. 24.

    Koenig JH, Ranawat AS, Umans HR, Difelice GS (2009) Meniscal root tears: diagnosis and treatment. Arthroscopy 25(9):1025–1032

    PubMed  Google Scholar 

  25. 25.

    LaPrade CM, Jansson KS, Dornan G, Smith SD, Wijdicks CA, LaPrade RF (2014) Altered tibiofemoral contact mechanics due to lateral meniscus posterior horn root avulsions and radial tears can be restored with in situ pull-out suture repairs. J Bone Joint Surg Am 96(6):471–479

    PubMed  Google Scholar 

  26. 26.

    Masouros SD, McDermott ID, Amis AA, Bull AM (2008) Biomechanics of the meniscus-meniscal ligament construct of the knee. Knee Surg Sports Traumatol Arthrosc 16(12):1121–1132

    CAS  PubMed  Google Scholar 

  27. 27.

    Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193(Pt 2):161–178

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ode GE, Van Thiel GS, McArthur SA, Dishkin-Paset J, Leurgans SE, Shewman EF, Wang VM, Cole BJ (2012) Effects of serial sectioning and repair of radial tears on the lateral meniscus. Am J Sports Med 40(8):1863–1870

    PubMed  Google Scholar 

  29. 29.

    Ohori T, Mae T, Shino K, Tachibana Y, Fujie H, Yoshikawa H, Nakata K (2019) Complementary function of the meniscofemoral ligament and lateral meniscus posterior root to stabilize the lateral meniscus posterior horn: a biomechanical study in a porcine knee model. Orthop J Sports Med. https://doi.org/10.1177/2325967118821605

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Pache S, Aman ZS, Kennedy M, Nakama GY, Moatshe G, Ziegler C, LaPrade RF (2018) Meniscal root tears: current concepts review. Arch Bone Joint Surg 6(4):250–259

    PubMed  Google Scholar 

  31. 31.

    Padalecki JR, Jansson KS, Smith SD, Dornan GJ, Pierce CM, Wijdicks CA, Laprade RF (2014) Biomechanical consequences of a complete radial tear adjacent to the medial meniscus posterior root attachment site: in situ pull-out repair restores derangement of joint mechanics. Am J Sports Med 42(3):699–707

    PubMed  Google Scholar 

  32. 32.

    Petersen W, Tillmann B (1998) Collagenous fibril texture of the human knee joint menisci. Anat Embryol 197(4):317–324

    CAS  Google Scholar 

  33. 33.

    Perez-Blanca A, Espejo-Baena A, Amat Trujillo D, PradoNóvoa M, Espejo-Reina A, QuinteroLópez C, EzquerroJuanco F (2016) Comparative biomechanical study on contact alterations after lateral meniscus posterior root avulsion, transosseous reinsertion, and total meniscectomy. Arthroscopy 32(4):624–633

    PubMed  Google Scholar 

  34. 34.

    Radin EL, de Lamotte F, Maquet P (1984) Role of the menisci in the distribution of stress in the knee. Clin Orthop Relat Res 185:290–294

    Google Scholar 

  35. 35.

    Seedhom BB, Hargreaves DJ (1979) Transmission of the load in the knee joint with special reference to the role in the menisci: part II Experimental results, discussion and conclusion. Eng Med 8:220–228

    Google Scholar 

  36. 36.

    Shieh A, Bastrom T, Roocroft J, Edmonds EW, Pennock AT (2013) Meniscus tear patterns in relation to skeletal immaturity: children versus adolescents. Am J Sports Med 41(12):2779–2783

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Tachibana Y, Mae T, Fujie H, Shino K, Ohori T, Yoshikawa H, Nakata K (2017) Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship. Knee Surg Sports Traumatol Arthrosc 25(2):355–361

    PubMed  Google Scholar 

  38. 38.

    Voloshin AS, Wosk J (1983) Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng 5(2):157–161

    CAS  PubMed  Google Scholar 

  39. 39.

    Walker PS, Arno S, Bell C, Salvadore G, Borukhov I, Oh C (2015) Function of the medial meniscus in force transmission and stability. J Biomech 48(8):1383–1388

    PubMed  Google Scholar 

  40. 40.

    Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 109:184–192

    Google Scholar 

  41. 41.

    Wang H, Chen T, Gee AO, Hutchinson ID, Stoner K, Warren RF, Rodeo SA, Maher SA (2015) Altered regional loading patterns on articular cartilage following meniscectomy are not fully restored by autograft meniscal transplantation. Osteoarthr Cartil 23(3):462–468

    CAS  Google Scholar 

  42. 42.

    Wu IT, Hevesi M, Desai VS, Camp CL, Dahm DL, Levy BA, Stuart MJ, Krych AJ (2018) Comparative outcomes of radial and bucket-handle meniscal tear repair: a propensity-matched analysis. Am J Sports Med 46(11):2653–2660

    PubMed  Google Scholar 

  43. 43.

    Zhang AL, Miller SL, Coughlin DG, Lotz JC, Feeley BT (2015) Tibiofemoral contact pressures in radial tears of the meniscus treated with all-inside repair, inside-out repair and partial meniscectomy. Knee 22(5):400–404

    PubMed  Google Scholar 

Download references


No source of funding was used for this study.

Author information




TO performed the experiment, analyzed the acquired data, and drafted the manuscript. TM conducted the study and helped to draft the manuscript. TH and YT helped to perform the experiment. KS, HF, HY, and KN supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tomoki Ohori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The institutional review board of the Osaka University Hospital reviewed the study protocol and determined that this study did not require oversight.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohori, T., Mae, T., Shino, K. et al. Different effects of the lateral meniscus complete radial tear on the load distribution and transmission functions depending on the tear site. Knee Surg Sports Traumatol Arthrosc 29, 342–351 (2021). https://doi.org/10.1007/s00167-020-05915-8

Download citation


  • Meniscus
  • Lateral meniscus
  • Radial tear
  • Load distribution
  • Contact pressure
  • Contact area
  • Load transmission
  • In situ force
  • Compressive load
  • Knee