Skip to main content
Log in

Transphyseal anterior cruciate ligament reconstruction using living parental donor hamstring graft: excellent clinical results at 2 years in a cohort of 100 patients

Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To determine outcomes of transphyseal ACL reconstruction using a living parental hamstring tendon allograft in a consecutive series of 100 children.

Methods

One hundred consecutive juveniles undergoing ACL reconstruction with a living parental hamstring allograft were recruited prospectively and reviewed 2 years after ACL reconstruction with IKDC Knee Ligament Evaluation, and KT1000 instrumented laxity testing. Skeletally immature participants obtained annual radiographs until skeletal maturity, and long leg alignment radiographs at 2 years. Radiographic Posterior tibial slope was recorded.

Results

Of 100 juveniles, the median age was 14 years (range 8–16) and 68% male. At surgery, 30 juveniles were graded Tanner 1 or 2, 21 were Tanner 3 and 49 were Tanner 4 or 5. There were no cases of iatrogenic physeal injury or leg length discrepancy on long leg radiographs at 2 years, despite a median increase in height of 8 cm. Twelve patients had an ACL graft rupture and 9 had a contralateral ACL injury. Of those without further ACL injury, 82% returned to competitive sports, IKDC ligament evaluation was normal in 52% and nearly normal in 48%. The median side to side difference on manual maximum testing with the KT1000 was 2 mm (range − 1 to 5). A radiographic PTS of 12° or more was observed in 49%.

Conclusions

ACL reconstruction in the juvenile with living parental hamstring tendon allograft is a viable procedure associated with excellent clinical stability, patient-reported outcomes and return to sport over 2 years. Further ACL injury to the reconstructed and the contralateral knee remains a significant risk, with identical prevalence observed between the reconstructed and contralateral ACL between 12 and 24 months after surgery.

Level of evidence

III (Cohort Study).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Abourezk MN, Ithurburn MP, McNally MP, Thoma LM, Briggs MS, Hewett TE et al (2017) Hamstring strength asymmetry at 3 years after anterior cruciate ligament reconstruction alters knee mechanics during gait and jogging. Am J Sports Med 45:97–105

    PubMed  Google Scholar 

  2. Aichroth PM, Patel DV, Zorrilla P (2002) The natural history and treatment of rupture of the anterior cruciate ligament in children and adolescents: a prospective review. J Bone Joint Surg Br 84(B):38–41

    CAS  PubMed  Google Scholar 

  3. Andernord D, Desai N, Björnsson H, Ylander M, Karlsson J, Samuelsson K (2014) Patient predictors of early revision surgery after anterior cruciate ligament reconstruction: a cohort study of 16,930 patients with 2-year follow-up. Am J Sports Med 43:121–127

    PubMed  Google Scholar 

  4. Ardern CL, Ekås G, Grindem H, Moksnes H, Anderson AF, Chotel F et al (2018) 2018 International Olympic Committee consensus statement on prevention, diagnosis and management of paediatric anterior cruciate ligament (ACL) injuries. Br J Sports Med 52:422–438

    PubMed  PubMed Central  Google Scholar 

  5. Bernhardson AS, Aman ZS, Dornan GJ, Kemler BR, Storaci HW, Brady AW et al (2019) Tibial slope and its effect on force in anterior cruciate ligament grafts: anterior cruciate ligament force increases linearly as posterior tibial slope increases. Am J Sports Med 47:296–302

    PubMed  Google Scholar 

  6. Boden BP, Sheehan FT, Torg JS, Hewett TE (2010) Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg 18:520–527

    PubMed  PubMed Central  Google Scholar 

  7. Cerulli G, Placella G, Sebastiani E, Tei MM, Speziali A, Manfreda F (2013) ACL Reconstruction: choosing the graft. Joints 1:18

    PubMed  PubMed Central  Google Scholar 

  8. Cruz AI Jr, Lakomkin N, Fabricant PD, Lawrence JT (2016) Transphyseal ACL reconstruction in skeletally immature patients: Does independent femoral tunnel drilling place the physis at greater risk compared with transtibial drilling? Orthop J Sports Med 4:2325967116650432

    PubMed  PubMed Central  Google Scholar 

  9. Domzalski M, Karauda A, Grzegorzewski A, Lebiedzinski R, Zabierek S, Synder M (2016) Anterior cruciate ligament reconstruction using the transphyseal technique in prepubescent athletes: midterm, prospective evaluation of results. Arthroscopy 32:1141–1146

    PubMed  Google Scholar 

  10. Ekås GR, Laane MM, Larmo A, Moksnes H, Grindem H, Risberg MA et al (2019) Knee pathology in young adults after pediatric anterior cruciate ligament injury: a prospective case series of 47 patients with a mean 9.5-year follow-up. Am J Sports Med 47:1557–1566

    PubMed  Google Scholar 

  11. Ellis HB, Matheny LM, Briggs KK, Pennock AT, Steadman JR (2012) Outcomes and revision rate after bone–patellar tendon–bone allograft versus autograft anterior cruciate ligament reconstruction in patients aged 18 years or younger with closed physes. Arthroscopy 28:1819–1825

    PubMed  Google Scholar 

  12. Evans KN, Kilcoyne KG, Dickens JF, Rue JP, Giuliani J, Gwinn D et al (2012) Predisposing risk factors for non-contact ACL injuries in military subjects. Knee Surg Sports Traumatol Arthrosc 20:1554–1559

    PubMed  Google Scholar 

  13. Fening S, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A (2008) The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21:205–211

    PubMed  PubMed Central  Google Scholar 

  14. Frosch K-H, Stengel D, Brodhun T, Stietencron I, Holsten D, Jung C et al (2010) outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy 26:1539–1550

    PubMed  Google Scholar 

  15. Goddard M, Bowman N, Salmon LJ, Waller A, Roe JP, Pinczewski LA (2013) Endoscopic anterior cruciate ligament reconstruction in children using living donor hamstring tendon allografts. Am J Sports Med 41:567–574

    PubMed  Google Scholar 

  16. Guenther ZD, Swami V, Dhillon SS, Jaremko JL (2014) Meniscal injury after adolescent anterior cruciate ligament injury: How long are patients at risk? Clin Orthop Relat Res 472:990–997

    PubMed  Google Scholar 

  17. Heath EL, Salmon LJ, Cooper R, Pappas E, Roe JP, Pinczewski LA (2018) 5-Year survival of pediatric anterior cruciate ligament reconstruction with living donor hamstring tendon grafts. Am J Sports Med 47:41–51

    PubMed  Google Scholar 

  18. Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP (2015) Risk Factors and Predictors of Subsequent ACL Injury in either knee After ACL reconstruction. Am J Sports Med 43:1583–1590

    PubMed  PubMed Central  Google Scholar 

  19. Kay J, Memon M, Marx RG, Peterson D, Simunovic N, Ayeni OR (2018) Over 90% of children and adolescents return to sport after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 26:1019–1036

    PubMed  Google Scholar 

  20. Konrath JM, Vertullo CJ, Kennedy BA, Bush HS, Barrett RS, Lloyd DG (2016) Morphologic characteristics and strength of the hamstring muscles remain altered at 2 years after use of a hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 44:2589–2598

    PubMed  Google Scholar 

  21. Kumar S, Ahearne D, Hunt D (2013) Transphyseal anterior cruciate ligament reconstruction in the skeletally immature: follow-up to a minimum of sixteen years of age. J Bone Joint Surg 95:e1

    PubMed  Google Scholar 

  22. Lemaitre G, Salle de Chou E, Pineau V, Rochcongar G, Delforge S, Bronfen C et al (2014) ACL reconstruction in children: a transphyseal technique. Orthop Traumatol Surg Res 100:S261–S265

    CAS  PubMed  Google Scholar 

  23. Makela EA, Vainionpaa S, Vihtonen K, Mero M, Rokkanen P (1988) The effect of trauma to the lower femoral epiphyseal plate. An experimental study in rabbits. J Bone Joint Surg Br 70:187–191

    CAS  PubMed  Google Scholar 

  24. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mascarenhas R, Erickson BJ, Sayegh ET, Verma NN, Cole BJ, Bush-Joseph C et al (2015) Is there a higher failure rate of allografts compared with autografts in anterior cruciate ligament reconstruction: a systematic review of overlapping meta-analyses. Arthroscopy 31:364–372

    PubMed  Google Scholar 

  27. Morgan MD, Salmon LJ, Waller A, Roe JP, Pinczewski LA (2016) Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger. Am J Sports Med 44:384–392

    PubMed  Google Scholar 

  28. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E (2019) Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus Bone-Patellar Tendon–Bone and Hamstring-Tendon autografts. Am J Sports Med 47(14):3531–3540

    PubMed  Google Scholar 

  29. Sajovic M, Stropnik D, Skaza K (2018) Long-term comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: a 17-year follow-up of a randomized controlled trial. Am J Sports Med 46:1800–1808

    PubMed  Google Scholar 

  30. Salem HS, Varzhapetyan V, Patel N, Dodson CC, Tjoumakaris FP, Freedman KB (2019) Anterior cruciate ligament reconstruction in young female athletes: patellar versus hamstring tendon autografts. Am J Sports Med 47:2086–2092

    PubMed  Google Scholar 

  31. Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21:948–957

    PubMed  Google Scholar 

  32. Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-Year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46:531–543

    PubMed  Google Scholar 

  33. Shaw L, Finch CF (2017) Trends in pediatric and adolescent anterior cruciate ligament injuries in Victoria, Australia 2005–2015. Int J Environ Res Public Health 14:599

    PubMed Central  Google Scholar 

  34. Shaw L, Finch CF, Bekker S (2019) Infographic: trends in paediatric and adolescent ACL injuries. Br J Sports Med 53:228

    PubMed  Google Scholar 

  35. Stanitski DF (1999) Limb-length inequality: assessment and treatment options. J Am Acad Orthop Surg 7:143–153

    CAS  PubMed  Google Scholar 

  36. Thompson SM, Salmon LJ, Waller A, Linklater J, Roe JP, Pinczewski LA (2016) Twenty-year outcome of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon or hamstring autograft. Am J Sports Med 44:3083–3094

    PubMed  Google Scholar 

  37. van Eck CF, Schkrohowsky JG, Working ZM, Irrgang JJ, Fu FH (2012) Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med 40:800–807

    PubMed  Google Scholar 

  38. Vyas S, van Eck CF, Vyas N, Fu FH, Otsuka NY (2011) Increased medial tibial slope in teenage pediatric population with open physes and anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 19:372–377

    PubMed  Google Scholar 

  39. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament–reconstructed patient. Am J Sports Med 41:2800–2804

    PubMed  Google Scholar 

  40. Webster K, Feller J (2016) Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 44:2827–2832

    PubMed  Google Scholar 

  41. Webster KE, Feller JA, Leigh WB, Richmond AK (2014) Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med 42:641–647

    PubMed  Google Scholar 

  42. Werner BC, Yang S, Looney AM, Gwathmey FW Jr (2016) Trends in pediatric and adolescent anterior cruciate ligament injury and reconstruction. J Pediatr Orthop 36:447–452

    PubMed  Google Scholar 

  43. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction a systematic review and meta-analysis. Am J Sports Med 44:1861–1876

    PubMed  PubMed Central  Google Scholar 

  44. Zbrojkiewicz D, Vertullo C, Grayson JE (2018) Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med J Aust 208:354–358

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy J. Salmon.

Ethics declarations

Conflict of interest

This study was funded by a research grant from the Friends of the Mater Foundation. JR receives institutional research support from Global Orthopaedics and Smith and Nephew, has given paid presentations for Depuy and Smith and Nephew, and is a shareholder in 360 Knee Systems. LP receives IP royalties from Signature Orthopaedics and Australian Biotechnology, research support from Australian Orthopaedic Association, Friends of the Mater Foundation and Smith and Nephew, stock or stock options from Australian Biotechnology, and is a paid presenter for Smith and Nephew.

Funding

This study was generously supported by The Friends of the Mater Foundation, Sydney, Australia.

Ethical approval

Ethical approval was obtained from St Vincents Human Research Ethics Committee, Sydney, Australia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K., Salmon, L.J., Heath, E. et al. Transphyseal anterior cruciate ligament reconstruction using living parental donor hamstring graft: excellent clinical results at 2 years in a cohort of 100 patients. Knee Surg Sports Traumatol Arthrosc 28, 2511–2518 (2020). https://doi.org/10.1007/s00167-019-05842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-019-05842-3

Keywords

Navigation