Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rates of revision and surgeon-reported graft rupture following ACL reconstruction: early results from the New Zealand ACL Registry

Abstract

Purpose

There remains a lack of consensus on the patient factors associated with graft rupture following anterior cruciate ligament (ACL) reconstruction. This study aimed to identify the rate of revision and surgeon-reported graft rupture and clarify the patient risk factors for failure.

Methods

Analysis was conducted on prospective data captured by the New Zealand ACL registry. All primary isolated ACL reconstructions recorded between April 2014 and December 2018 were reviewed to identify the rate of revision and surgeon-reported graft rupture. Univariate and multivariate survival analysis was performed to identify patient factors associated with revision and graft rupture.

Results

A total of 7402 primary isolated ACL reconstructions were reviewed and had a mean follow-up time of 23.1 (SD ± 13.9) months. There were 258 surgeon-reported graft ruptures (3.5%) of which 175 patients underwent subsequent revision ACL reconstruction (2.4%). Patients younger than 18 years had the highest risk of revision (adjusted HR = 7.29, p < 0.001) and graft rupture (adjusted HR = 4.26, p < 0.001) when compared to patients aged over 36 years. Male patients had a higher risk of revision (adjusted HR = 2.00, p < 0.001) and graft rupture (adjusted HR = 1.70, p < 0.001) when compared to their female counterparts. Patients who underwent ACL reconstruction within 6 months of their injury had a two times increased risk of revision compared to patients who had surgery after 12 months (adjusted HR = 2.15, p = 0.016).

Conclusion

Younger age, male sex and a shorter injury-to-surgery time interval increased the risk of revision, while younger age and male sex increased the risk of surgeon-reported graft rupture.

Level of evidence

II.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Giugliano DN, Solomon JL (2007) ACL tears in female athletes. Phys Med Rehabil Clin N Am 18:417–438

  2. 2.

    Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE et al (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8:141–150

  3. 3.

    Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG (2009) Epidemiology of anterior cruciate ligament reconstruction. Trends, readmissions, and subsequent knee surgery. J Bone Joint Surg 91:2321–2328

  4. 4.

    Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR et al (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42:2363–2370

  5. 5.

    Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA et al (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44:1502–1507

  6. 6.

    Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G et al (2014) Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 42:2319–2328

  7. 7.

    Ponce BA, Cain EL, Pflugner R, Fleisig GS, Young BL, Boohaker HA et al (2016) Risk factors for revision anterior cruciate ligament reconstruction. J Knee Surg 29:329–336

  8. 8.

    Salmon LJ, Refshauge KM, Russell VJ, Roe JP, Linklater J, Pinczewski LA (2006) Gender differences in outcome after anterior cruciate ligament reconstruction with hamstring tendon autograft. Am J Sports Med 34:621–629

  9. 9.

    Schlumberger M, Schuster P, Schulz M, Immendörfer M, Mayer P, Bartholomä J et al (2017) Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc 25:1535–1541

  10. 10.

    Stevenson H, Jennifer Webster B, Robert Johnson B, Beynnon B, Beynnon BD (1998) Gender differences in knee injury epidemiology among competitive alpine ski racers. Iowa Orthop J 18:64–66

  11. 11.

    Yabroudi M, Björnsson H, Lynch A, Muller B, Samuelsson K, Tarabichi M et al (2016) Predictors of revision surgery after anterior cruciate ligament reconstruction. Am J Sports Med 4:1–7

  12. 12.

    Benjamin B, Magnussen RA, Abraham GT, Mamman KG (2013) ACL reconstruction registry in Brunei Darussalam: a comparison with European and North American cohorts. Eur Orthop Traumatol 4:173–176

  13. 13.

    Magnussen RA, Trojani C, Granan LP, Neyret P, Colombet P, Engebretsen L et al (2015) Patient demographics and surgical characteristics in ACL revision: a comparison of French, Norwegian, and North American cohorts. Knee Surg Sports Traumatol Arthrosc 23:2339–2348

  14. 14.

    Svantesson E, Hamrin Senorski E, Baldari A, Ayeni OR, Engebretsen L, Franceschi F et al (2018) Factors associated with additional anterior cruciate ligament reconstruction and register comparison: a systematic review on the Scandinavian knee ligament registers. Br J Sports Med 53:418–425

  15. 15.

    Andernord D, Desai N, Björnsson H, Ylander M, Karlsson J, Samuelsson K (2015) Patient predictors of early revision surgery after anterior cruciate ligament reconstruction: a cohort study of 16,930 patients with 2-year follow-up. Am J Sports Med 43:121–127

  16. 16.

    Fältström A, Hägglund M, Magnusson H, Forssblad M, Kvist J (2016) Predictors for additional anterior cruciate ligament reconstruction: data from the Swedish national ACL register. Knee Surg Sports Traumatol Arthrosc 24:885–894

  17. 17.

    Lind M, Menhert F, Pedersen AB (2012) Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med 40:1551–1557

  18. 18.

    Maletis GB, Chen J, Inacio MCS, Love RM, Funahashi TT (2017) Increased risk of revision after anterior cruciate ligament reconstruction with soft tissue allografts compared with autografts: graft processing and time make a difference. Am J Sports Med 45:1837–1844

  19. 19.

    Spragg L, Chen J, Mirzayan R, Love R, Maletis G (2016) The effect of autologous hamstring graft diameter on the likelihood for revision of anterior cruciate ligament reconstruction. Am J Sports Med 44:1475–1481

  20. 20.

    Svantesson E, Sundemo D, Hamrin Senorski E, Alentorn-Geli E, Musahl V, Fu FH et al (2017) Double-bundle anterior cruciate ligament reconstruction is superior to single-bundle reconstruction in terms of revision frequency: a study of 22,460 patients from the Swedish National Knee Ligament Register. Knee Surg Sports Traumatol Arthrosc 25:3884–3891

  21. 21.

    New Zealand ACL registry annual report 2017. https://www.aclregistry.nz/reports/. Accessed 1 Nov 2019

  22. 22.

    New Zealand ACL registry annual report 2018. https://www.aclregistry.nz/reports/. Accessed 1 Nov 2019

  23. 23.

    Faunø P, Rahr-Wagner L, Lind M (2014) Risk for revision after anterior cruciate ligament reconstruction is higher among adolescents: results from the Danish registry of knee ligament reconstruction. Orthop J Sport Med. https://doi.org/10.1177/2325967114552405

  24. 24.

    Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP (2015) Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: Prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med 43:1583–1590

  25. 25.

    Magnussen RA, Lawrence JTR, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531

  26. 26.

    Maletis GB, Chen J, Inacio MCS, Funahashi TT (2016) Age-related risk factors for revision anterior cruciate ligament reconstruction: a cohort study of 21,304 patients from the Kaiser Permanente anterior cruciate ligament registry. Am J Sports Med 44:331–336

  27. 27.

    Maletis GB, Inacio MCS, Desmond JL, Funahashi TT (2013) Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Joint J 95:623–628

  28. 28.

    Wasserstein D, Khoshbin A, Dwyer T, Chahal J, Gandhi R, Mahomed N et al (2013) Risk factors for recurrent anterior cruciate ligament reconstruction: a population study in Ontario, Canada, with 5-year follow-up. Am J Sports Med 41:2099–2107

  29. 29.

    Webster KE, Feller JA, Leigh WB, Richmond AK (2014) Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med 42:641–647

  30. 30.

    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction. Am J Sports Med 44:1861–1876

  31. 31.

    Desai N, Andernord D, Sundemo D, Alentorn-Geli E, Musahl V, Fu F et al (2017) Revision surgery in anterior cruciate ligament reconstruction: a cohort study of 17,682 patients from the Swedish National Knee Ligament Register. Knee Surg Sports Traumatol Arthrosc 25:1542–1554

  32. 32.

    Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM et al (2014) Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004–2012. Am J Sports Med 42:285–291

  33. 33.

    Edwards PK, Ebert JR, Joss B, Ackland T, Annear P, Buelow JU et al (2018) Patient characteristics and predictors of return to sport at 12 months after anterior cruciate ligament reconstruction: the importance of patient age and postoperative rehabilitation. Orthop J Sport Med. https://doi.org/10.1177/2325967118797575

  34. 34.

    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2012) Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 22:116–121

  35. 35.

    Webster KE, Feller JA (2018) Return to level I sports after anterior cruciate ligament reconstruction: evaluation of age, sex, and readiness to return criteria. Orthop J Sport Med. https://doi.org/10.1177/2325967118788045

  36. 36.

    Webster KE, Feller JA, Whitehead TS, Myer GD, Merory PB (2017) Return to sport in the younger patient with anterior cruciate ligament reconstruction. Orthop J Sport Med 5:1–4

  37. 37.

    Marx RG, Stump TJ, Jones EC, Wickiewicz TL, Warren RF (2001) Development and evaluation of an activity rating scale for disorders of the knee. Am J Sports Med 29:213–218

  38. 38.

    De Valk EJ, Moen MH, Winters M, Bakker EWP, Tamminga R, Van Der Hoeven H (2013) Preoperative patient and injury factors of successful rehabilitation after anterior cruciate ligament reconstruction with single-bundle techniques. Arthroscopy 29:1879–1895

  39. 39.

    Smith HC, Vacek P, Johnson RJ, Slauterbeck JR, Hashemi J, Shultz S et al (2012) Risk factors for anterior cruciate ligament injury: a review of the literature-part 1: neuromuscular and anatomic risk. Sports Health 4:69–78

  40. 40.

    Maletis GB, Inacio MCS, Funahashi TT (2015) Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med 43:641–647

  41. 41.

    Tan SHS, Lau BPH, Khin LW, Lingaraj K (2016) The importance of patient sex in the outcomes of anterior cruciate ligament reconstructions. Am J Sports Med 44:242–254

Download references

Acknowledgements

The authors would like to acknowledge Charlotte Smith from the New Zealand ACL registry for her ongoing support and assistance with data administration. RR would to like to acknowledge the Maurice and Phyllis Paykel Trust for providing student support.

Author information

Correspondence to Richard Rahardja.

Ethics declarations

Conflict of interest

We, the authors, declare that we have no conflicts of interest with relation to this study. MGC reports that he does consulting for Johnson & Johnson, receives fellowship funding from Johnson & Johnson and Arthrex, and receives royalties from Arthrex, none of which are related to this study.

Funding

There is no funding source.

Ethical approval

Health and Disability Ethics Committee approval as an audit activity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table

Table 4 Cox regression analysis: patients with minimum 2-year follow-up

4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahardja, R., Zhu, M., Love, H. et al. Rates of revision and surgeon-reported graft rupture following ACL reconstruction: early results from the New Zealand ACL Registry. Knee Surg Sports Traumatol Arthrosc (2019). https://doi.org/10.1007/s00167-019-05773-z

Download citation

Keywords

  • ACL reconstruction
  • National registry
  • Revision ACL
  • Graft rupture