Skip to main content

Advertisement

Log in

Patient-specific high-tibial osteotomy’s ‘cutting-guides’ decrease operating time and the number of fluoroscopic images taken after a Brief Learning Curve

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Patient-specific cutting guides (PSCGs) have been advocated to improve the accuracy of deformity correction in opening-wedge high-tibial osteotomies (HTO). It was hypothesized that PSCGs for HTO would have a short learning curve. Therefore, the goals of this study were to determine the surgeons learning curve for PSCGs used for opening-wedge HTO assessing: the operating time, surgeons comfort levels, number of fluoroscopic images, accuracy of post-operative limb alignment and functional outcomes.

Methods

This prospective cohort study included 71 consecutive opening-wedge HTO with PSCGs performed by three different surgeons with different experiences. The operating time, the surgeon’s anxiety levels evaluated using the Spielberger State-Trait Anxiety Inventory (STAI), the number of fluoroscopic images was systematically and prospectively collected. The accuracy of the postoperative alignment was defined by the difference between the preoperative targeted correction and the final post-operative correction both measured on standardized CT-scans using the same protocol (ΔHKA, ΔMPTA, ΔPPTA). Functional outcomes were evaluated at 1 year using the different sub-scores of the KOOS. Cumulative summation (CUSUM) analyses were used to assess learning curves.

Results

The use of PSCGs in HTO surgery was associated with a learning curve of 10 cases to optimize operative time (mean operative time 26.3 min ± 8.8), 8 cases to lessen surgeon anxiety levels, and 9 cases to decrease the number of fluoroscopic images to an average of 4.3 ± 1.2. Cumulative PSCGs experience did not affect accuracy of post-operative limb alignment with a mean: ΔHKA = 1.0° ± 1.0°, ΔMPTA = 0.5° ± 0.6° and ΔPPTA = 0.4° ± 0.8°. No significant difference was observed between the three surgeons for these three parameters. There was no statistical correlation between the number of procedures performed and the patient’s functional outcomes.

Conclusion

The use of PSCGs requires a short learning curve to optimize operating time, reduce the use of fluoroscopy and lessen surgeon’s anxiety levels. Additionally, this learning phase does not affect the accuracy of the postoperative correction and the functional results at 1 year.

Level of evidence

II: prospective observational study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahlbäck S, Rydberg J (1980) X-ray classification and examination technics in gonarthrosis. Lakartidningen 77(2091–2093):2096

    Google Scholar 

  2. Arnal-Burró J, Pérez-Mañanes R, Gallo-Del-Valle E, Igualada-Blazquez C, Cuervas-Mons M, Vaquero-Martín J (2017) Three dimensional-printed patient-specific cutting guides for femoral varization osteotomy: do it yourself. Knee 24:1359–1368

    Article  Google Scholar 

  3. Asik M, Sen C, Kilic B, Goksan SB, Ciftci F, Taser OF (2006) High tibial osteotomy with Puddu plate for the treatment of varus gonarthrosis. Knee Surg Sports Traumatol Arthrosc 14:948–954

    Article  Google Scholar 

  4. Banerjee S, Faizan A, Nevelos J, Kreuzer S, Burgkart R, Harwin SF, Mont MA (2014) Innovations in hip arthroplasty three-dimensional modeling and analytical technology (SOMA). Surg Technol Int 24:288–294

    PubMed  Google Scholar 

  5. Boonen B, Kerens B, Schotanus MGM, Emans P, Jong B, Kort NP (2016) Inter-observer reliability of measurements performed on digital long-leg standing radiographs and assessment of validity compared to 3D CT-scan. Knee 23:20–24

    Article  CAS  Google Scholar 

  6. Brouwer RW, Bierma-Zeinstra SMA, van Raaij TM, Verhaar JaN (2006) Osteotomy for medial compartment arthritis of the knee using a closing wedge or an opening wedge controlled by a Puddu plate. A one-year randomised, controlled study. J Bone Joint Surg Br 88:1454–1459

    Article  CAS  Google Scholar 

  7. Corona PS, Vicente M, Tetsworth K, Glatt V (2018) Preliminary results using patient-specific 3d printed models to improve preoperative planning for correction of post-traumatic tibial deformities with circular frames. Injury 49(Suppl 2):S51–S59

    Article  Google Scholar 

  8. Dessyn E, Sharma A, Donnez M, Chabrand P, Ehlinger M, Argenson J-N, Parratte S, Ollivier M (2019) Adding a protective K-wire during opening high tibial osteotomy increases lateral hinge resistance to fracture. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05404-7

    Article  PubMed  Google Scholar 

  9. Donnez M, Ollivier M, Munier M, Berton P, Podgorski J-P, Chabrand P, Parratte S (2018) Are three-dimensional patient-specific cutting guides for open wedge high tibial osteotomy accurate? An in vitro study. J Orthop Surg Res 13:171

    Article  Google Scholar 

  10. Duivenvoorden T, Brouwer RW, Baan A, Bos PK, Reijman M, Bierma-Zeinstra SMA, Verhaar JaN (2014) Comparison of closing-wedge and opening-wedge high tibial osteotomy for medial compartment osteoarthritis of the knee: a randomized controlled trial with a six-year follow-up. J Bone Joint Surg Am 96:1425–1432

    Article  CAS  Google Scholar 

  11. Hankemeier S, Hufner T, Wang G, Kendoff D, Zeichen J, Zheng G, Krettek C (2006) Navigated open-wedge high tibial osteotomy: advantages and disadvantages compared to the conventional technique in a cadaver study. Knee Surg Sports Traumatol Arthrosc 14:917–921

    Article  CAS  Google Scholar 

  12. Hantes ME, Natsaridis P, Koutalos AA, Ono Y, Doxariotis N, Malizos KN (2018) Satisfactory functional and radiological outcomes can be expected in young patients under 45 years old after open wedge high tibial osteotomy in a long-term follow-up. Knee Surg Sports Traumatol Arthrosc 26:3199–3205

    Article  Google Scholar 

  13. Jacquet C, Chan-Yu-Kin J, Sharma A, Argenson J-N, Parratte S, Ollivier M (2018) More accurate correction using “patient-specific” cutting guides in opening wedge distal femur varization osteotomies. Int Orthop. https://doi.org/10.1007/s00264-018-4207-1

    Article  PubMed  Google Scholar 

  14. Jud L, Fürnstahl P, Vlachopoulos L, Götschi T, Leoty LC, Fucentese SF (2019) Malpositioning of patient-specific instruments within the possible degrees of freedom in high-tibial osteotomy has no considerable influence on mechanical leg axis correction. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05432-3

    Article  PubMed  Google Scholar 

  15. Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS (2018) Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5138-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kayani B, Konan S, Pietrzak JRT, Huq SS, Tahmassebi J, Haddad FS (2018) The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J 100-B:1033–1042

    Article  CAS  Google Scholar 

  17. Kroes T, Valstar E, Eisemann E (2015) Numerical optimization of alignment reproducibility for customizable surgical guides. Int J Comput Assist Radiol Surg 10:1567–1578

    Article  Google Scholar 

  18. Lind-Hansen TB, Lind MC, Nielsen PT, Laursen MB (2016) Open-wedge high tibial osteotomy: RCT 2 years RSA follow-up. J Knee Surg 29:664–672

    Article  Google Scholar 

  19. Marteau TM, Bekker H (1992) The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). Br J Clin Psychol 31(Pt 3):301–306

    Article  CAS  Google Scholar 

  20. Marti CB, Gautier E, Wachtl SW, Jakob RP (2004) Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. Arthroscopy 20:366–372

    Article  Google Scholar 

  21. Munier M, Donnez M, Ollivier M, Flecher X, Chabrand P, Argenson J-N, Parratte S (2017) Can three-dimensional patient-specific cutting guides be used to achieve optimal correction for high tibial osteotomy? Pilot study. Orthop Traumatol Surg Res 103:245–250

    Article  CAS  Google Scholar 

  22. Nerhus TK, Ekeland A, Solberg G, Sivertsen EA, Madsen JE, Heir S (2017) Radiological outcomes in a randomized trial comparing opening wedge and closing wedge techniques of high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 25:910–917

    Article  Google Scholar 

  23. Pérez-Mañanes R, Burró JA, Manaute JR, Rodriguez FC, Martín JV (2016) 3D surgical printing cutting guides for open-wedge high tibial osteotomy: do it yourself. J Knee Surg 29:690–695

    Article  Google Scholar 

  24. Roos EM, Lohmander LS (2003) The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes 1:64

    Article  Google Scholar 

  25. Saragaglia D, Roberts J (2005) Navigated osteotomies around the knee in 170 patients with osteoarthritis secondary to genu varum. Orthopedics 28:s1269–s1274

    PubMed  Google Scholar 

  26. Schallberger A, Jacobi M, Wahl P, Maestretti G, Jakob RP (2011) High tibial valgus osteotomy in unicompartmental medial osteoarthritis of the knee: a retrospective follow-up study over 13–21 years. Knee Surg Sports Traumatol Arthrosc 19:122–127

    Article  Google Scholar 

  27. Schröter S, Ihle C, Elson DW, Döbele S, Stöckle U, Ateschrang A (2016) Surgical accuracy in high tibial osteotomy: coronal equivalence of computer navigation and gap measurement. Knee Surg Sports Traumatol Arthrosc 24:3410–3417

    Article  Google Scholar 

  28. Shi J, Lv W, Wang Y, Ma B, Cui W, Liu Z, Han K (2018) Three dimensional patient-specific printed cutting guides for closing-wedge distal femoral osteotomy. Int Orthop. https://doi.org/10.1007/s00264-018-4043-3

    Article  PubMed  Google Scholar 

  29. Sodhi N, Khlopas A, Piuzzi NS, Sultan AA, Marchand RC, Malkani AL, Mont MA (2018) The learning curve associated with robotic total knee arthroplasty. J Knee Surg 31:17–21

    Article  Google Scholar 

  30. Victor J, Premanathan A (2013) Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study. Bone Joint J 95-B:153–158

    Article  CAS  Google Scholar 

  31. W-Dahl A, Toksvig-Larsen S, Lindstrand A (2017) Ten-year results of physical activity after high tibial osteotomy in patients with knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 25:902–909

    Article  Google Scholar 

Download references

Funding

No funding was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Ollivier.

Ethics declarations

Conflict of interest

Some of the authors disclosed potential conflict of interest.

Ethical approval

Local ethic committee approval was obtained prior to study Initiation (N°2014-36).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was performed at the Institute for Locomotion, Aix-Marseille University, Marseille, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacquet, C., Sharma, A., Fabre, M. et al. Patient-specific high-tibial osteotomy’s ‘cutting-guides’ decrease operating time and the number of fluoroscopic images taken after a Brief Learning Curve. Knee Surg Sports Traumatol Arthrosc 28, 2854–2862 (2020). https://doi.org/10.1007/s00167-019-05637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-019-05637-6

Keywords

Navigation