Abstract
Purpose
To evaluate clinical outcomes over a 1-year period in patients affected by symptomatic focal chondral lesions of the knee treated with micro-fragmented stromal-vascular fraction plus microfractures compared to microfractures alone.
Methods
Two groups of 20 patients were arthroscopically treated with microfractures for a symptomatic focal chondral defect of the knee. At the end of surgery, in the experimental group, micro-fragmented stromal-vascular fraction was injected into the joint. Primary end point was WOMAC score at 12 months. Secondary end points were any adverse events, Oxford Knee Score, EQ-5D score, VAS for pain, analgesic and anti-inflammatory consumption.
Results
All the patients were evaluated at 12-month follow-up. No adverse reactions were noted. Analgesic and anti-inflammatory consumption was similar in both groups. At 1-month follow-up, no differences were noted between groups when compared to pre-operative scores. At 3-month follow-up, patients in both groups improved from the baseline in all variables. Significantly lower VAS scores were found in the experimental group (4.2 ± 3.2 vs. 5.9 ± 1.7, p = 0.04). At 6- and 12-month follow-ups, patients in the experimental group scored better in all outcomes with a moderate effect size; in particular, better WOMAC scores were obtained at 12 months, achieving the primary end-point of the study (17.7 ± 11.1 vs. 25.5 ± 12.7; p = 0.03).
Conclusions
Injection of micro-fragmented stromal-vascular fraction is safe and, when associated with microfractures, is more effective in clinical terms than microfractures alone in patients affected by symptomatic focal chondral lesions of the knee. Results of the current study provide information that could help physicians to improve their counseling for patients concerning ADMSCs.
Level of evidence
Level 1—therapeutic study.
This is a preview of subscription content, access via your institution.


Abbreviations
- ADMSCs:
-
Adipose-derived mesenchymal stem cells
- BMI:
-
Body mass index
- CONSORT:
-
Consolidated Standards of Reporting Trials
- EQ-5D:
-
EuroQol-5D
- PRP:
-
Platelet-Rich Plasma
- VAS:
-
Visual Analogue Scale
- WOMAC:
-
Western Ontario & McMaster Universities Osteoarthritis Index
- MCID:
-
Minimal Clinical Important Difference
- MOCART:
-
Magnetic Resonance Observation of Cartilage Repair Tissue
References
Arcidiacono JA, Blair JW, Benton KA (2012) US food and drug administration international collaborations for cellular therapy product regulation. Stem Cell Res Ther 3(5):38
Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int. https://doi.org/10.1155/2012/812693
Becerra J, Andrades JA, Guerado E, Zamora-Navas P, López-Puertas JM, Reddi AH (2010) Articular cartilage: structure and regeneration. Tissue Eng Part B Rev 16(6):617–627
Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1998) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840
Bianchi F, Maioli M, Leonardi E, Olivi E, Pasquinelli G, Valente S, Mendez AJ, Ricordi C, Raffaini M, Tremolada C, Ventura C (2013) A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transpl 22(11):2063–2077
Buckwalter JA, Brown TD (2004) Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res 423:7–16
Caplan AI (2009) Why are MSCs therapeutic? New Data: New Insight J Pathol 217(2):318–324
Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6(6):1445–1451
Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15
Carelli S, Messaggio F, Canazza A, Hebda DM, Caremoli F, Latorre E, Grimoldi MG, Colli M, Bulfamante G, Tremolada C, Di Giulio AM, Gorio A (2015) Characteristics and properties of mesenchymal stem cells derived from microfragmented adipose tissue. Cell Transpl 24(7):1233–1252
Cattaneo G, De Caro A, Napoli F, Chiapale D, Trada P, Camera A (2018) Micro-fragmented adipose tissue injection associated with arthroscopic procedures in patients with symptomatic knee osteoarthritis. BMC Musculoskelet Disord 19(1):176
Ceserani V, Ferri A, Berenzi A, Benetti A, Ciusani E, Pascucci L, Bazzucchi C, Coccè V, Bonomi A, Pessina A, Ghezzi E, Zeira O, Ceccarelli P, Versari S, Tremolada C, Alessandri G (2016) Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells. Vasc Cell 8:3
Choi S, Kim JH, Ha J, Jeong BI, Jung YC, Lee GS, Woo HM, Kang BJ (2018) Intra-articular injection of alginate-microencapsulated adipose tissue-derived mesenchymal stem cells for the treatment of osteoarthritis in rabbits. Stem Cells Int 2018:2791632
Coccè V, Brini A, Giannì AB, Sordi V, Berenzi A, Alessandri G, Tremolada C, Versari S, Bosetto A, Pessina A (2018) A nonenzymatic and automated closed-cycle process for the isolation of mesenchymal stromal cells in drug delivery applications. Stem Cells Int 10:11. https://doi.org/10.1155/2018/4098140
Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Earlbaum Associates, Hillsdale, pp 20–26
Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement surgery. J Bone Joint Surg Br 80(1):63–69
Dragoo JL, Carlson G, McCormick F, Khan-Farooqi H, Zhu M, Zuk PA, Benhaim P (2007) Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng 13(7):1615–1621
EuroQol Group (1990) EuroQol ``a new facility for the measurement of health-related quality of life’’. Health Policy 16(3):199–208
Gould D, Kelly D, Goldstone L, Gammon J (2001) Examining the validity of pressure ulcer risk assessment scales: developing and using illustrated patient simulations to collect the data. J Clin Nurs 10(5):697–706
Goyal D, Keyhani S, Lee EH, Hui JH (2013) Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy 29(9):1579–1588
Ha CW, Park YB, Kim SH, Lee HJ (2019) Intra-articular mesenchymal stem cells in osteoarthritis of the knee: a systematic review of clinical outcomes and evidence of cartilage repair. Arthroscopy 35(1):277.e2–288.e2
Hudetz D, Borić I, Rod E, Jeleč Ž, Radić A, Vrdoljak T, Skelin A, Lauc G, Trbojević-Akmačić I, Plečko M, Polašek O, Primorac D (2017) The effect of intra-articular injection of autologous microfragmented fat tissue on proteoglycan synthesis in patients with knee osteoarthritis. Genes (Basel) 8(10):270
Jayaram P, Ikpeama U, Rothenberg JB, Malanga GA (2019) Bone marrow-derived and adipose-derived mesenchymal stem cell therapy in primary knee osteoarthritis: a narrative review. PM R 11(2):177–191
Jurgens WJ, Kroeze RJ, Zandieh-Doulabi B, van Dijk A, Renders GA, Smit TH, van Milligen FJ, Ritt MJ, Helder MN (2013) One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access 2(4):315–325
Kellgren JH, Lawrence JS (1952) Rheumatism in miners. II. X-ray study. Br J Ind Med 9(3):197–207
Kim YS, Lee M, Koh YG (2016) Additional mesenchymal stem cell injection improves the outcomes of marrow stimulation combined with supramalleolar osteotomy in varus ankle osteoarthritis: short-term clinical results with second-look arthroscopic evaluation. J Exp Orthop 3(1):12
Kim YS, Park EH, Kim YC, Koh YG (2013) Clinical outcomes of mesenchymal stem cell injection with arthroscopic treatment in older patients with osteochondral lesions of the talus. Am J Sports Med 41(5):1090–1099
Kim YS, Koh YG (2016) Injection of mesenchymal stem cells as a supplementary strategy of marrow stimulation improves cartilage regeneration after lateral sliding calcaneal osteotomy for varus ankle osteoarthritis: clinical and second-look arthroscopic results. Arthroscopy 32(5):878–889
Kim YS, Koh YG (2018) Comparative matched-pair analysis of open-wedge high tibial osteotomy with versus without an injection of adipose-derived mesenchymal stem cells for varus knee osteoarthritis: clinical and second-look arthroscopic results. Am J Sports Med 46(11):2669–2677
Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at 5 years. J Bone Joint Surg Am 89(10):2105–2112
Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Ludvigsen TC, Løken S, Solheim E, Strand T, Johansen O (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14–15 years. J Bone Joint Surg Am 98(16):1332–1339
Koh YG, Choi YJ, Kwon OR, Kim YS (2014) Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. Am J Sports Med 42(7):1628–1637
Koh YG, Kwon OR, Kim YS, Choi YJ (2014) Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study. Arthroscopy 30(11):1453–1460
Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH (2016) Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy 32(1):97–109
Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57(1):16–23
Nguyen PD, Tran TD, Nguyen HT, Vu HT, Le PT, Phan NL, Vu NB, Phan NK, Van Pham P (2017) Comparative clinical observation of arthroscopic microfracture in the presence and absence of a stromal vascular fraction injection for osteoarthritis. Stem Cells Transl Med 6(1):187–195
Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sánchez A, García-Sancho J (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 95(12):1535–1541
Ossendorff R, Franke K, Erdle B, Uhl M, Südkamp NP, Salzmann GM (2019) Clinical and radiographical 10 years long-term outcome of microfracture vs. autologous chondrocyte implantation: a matched-pair analysis. Int Orthop 43(3):553–559
Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43B:752–757
Pak J (2011) Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Rep 5:296
Perdisa F, Gostyńska N, Filardo G, Marcacci M, Kon E (2015) Adipose-derived mesenchymal stem cells for the treatment of joint degeneration: a systematic review on preclinical and clinical evidence. Stem Cells Int 597652
Roseti L, Serra M, Tigani D, Brognara I, Lopriore A, Bassi A, Fornasari PM (2008) Cell manipulation in autologous chondrocyte implantation: from research to clean room. Chir Organi Mov 91(3):147–151
Russo A, Condello V, Madonna V, Guerriero M, Zorzi C (2017) Autologous and micro-fragmented adipose tissue for the treatment of diffuse degenerative knee osteoarthritis. J Exp Orthop 4(1):33
Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173
Torre ML, Lucarelli E, Guidi S, Ferrari M, Alessandri G, De Girolamo L, Pessina A, Ferrero I (2015) Ex vivo expanded mesenchymal stromal cell minimal quality requirements for clinical application. Stem Cells Dev 24(6):677–685
Tremolada C, Colombo V, Ventura C (2016) Adipose tissue and mesenchymal stem cells: state of the art and Lipogems® technology development. Curr Stem Cell Rep 2:304–312
Van Pham P, Hong-Thien Bui K, Quoc Ngo D, Tan Khuat L, Kim Phan N (2013) Transplantation of nonexpanded adipose stromal vascular fraction and platelet-rich plasma for articular cartilage injury treatment in mice model. J Med Eng. https://doi.org/10.1155/2013/832396
Zeira O, Scaccia S, Pettinari L, Ghezzi E, Asiag N, Martinelli L, Zahirpour D, Dumas MP, Konar M, Lupi DM, Fiette L, Pascucci L, Leonardi L, Cliff A, Alessandri G, Pessina A, Spaziante D, Aralla M (2018) Intra-articular administration of autologous micro-fragmented adipose tissue in dogs with spontaneous osteoarthritis: safety, feasibility, and clinical outcomes. Stem Cells Transl Med 7(11):819–828
Funding
No funding was used.
Author information
Authors and Affiliations
Contributions
SB has been involved in conception and design, analysis and interpretation of data, and drafting the manuscript. CT has been involved in conception and design, performed all the surgeries, and revised the manuscript critically for important intellectual content. GB and SMP have made substantial contributions to acquisition of data. All the authors have given final approval of the version to be published. They agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no potential conflict of interest.
Ethical approval
Ethical approval was received from the University of Rome Tor Vergata Ethics Committee (Protocol LIPO 2 - approval number 8/16).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bisicchia, S., Bernardi, G., Pagnotta, S.M. et al. Micro-fragmented stromal-vascular fraction plus microfractures provides better clinical results than microfractures alone in symptomatic focal chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 28, 1876–1884 (2020). https://doi.org/10.1007/s00167-019-05621-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00167-019-05621-0