Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 27, Issue 6, pp 1754–1770 | Cite as

The use of allograft tendons in primary ACL reconstruction

  • Christophe Hulet
  • Bertrand Sonnery-Cottet
  • Ciara Stevenson
  • Kristian Samuelsson
  • Lior Laver
  • Urszula Zdanowicz
  • Sjoerd Stufkens
  • Jonathan Curado
  • Peter Verdonk
  • Tim SpaldingEmail author
Knee

Abstract

Purpose

Graft choice in primary anterior cruciate ligament (ACL) reconstruction remains controversial. The use of allograft has risen exponentially in recent years with the attraction of absent donor site morbidity, reduced surgical time and reliable graft size. However, the published evidence examining their clinical effectiveness over autograft tendons has been unclear. The aim of this paper is to provide a current review of the clinical evidence available to help guide surgeons through the decision-making process for the use of allografts in primary ACL reconstruction.

Methods

The literature in relation to allograft healing, storage, sterilisation, differences in surgical technique and rehabilitation have been reviewed in addition to recent comparative studies and all clinical systematic reviews and meta-analyses.

Results

Early reviews have indicated a higher risk of failure with allografts due to association with irradiation for sterilisation and where rehabilitation programs and post-operative loading may ignore the slower incorporation of allografts. More recent analysis indicates a similar low failure rate for allograft and autograft methods of reconstruction when using non-irradiated allografts that have not undergone chemically processing and where rehabilitation has been slower. However, inferior outcomes with allografts have been reported in young (< 25 years) highly active patients, and also when irradiated or chemically processed grafts are used.

Conclusion

When considering use of allografts in primary ACL reconstruction, use of irradiation, chemical processing and rehabilitation programs suited to autograft are important negative factors. Allografts, when used for primary ACL reconstruction, should be fresh frozen and non-irradiated. Quantification of the risk of use of allograft in the young requires further evaluation.

Levels of evidence

III.

Keywords

Anterior cruciate ligament reconstruction Allografts ACL Graft choice Decision making Autografts 

Notes

Acknowledgements

Tarek Boutefnouchet FRCS Orth., for assistance with preparation of the manuscript.

Funding

No external funding was used.

Compliance with ethical standards

Conflict of interest

The authors had no conflicts of interest

Ethical approval

Ethical approval not sought as study is not involving humans or clinical work

References

  1. 1.
    From the centers for disease control and prevention. Update: allograft-associated bacterial infections–United States, 2002. JAMA 287:1642–1644Google Scholar
  2. 2.
    Almqvist KF, Willaert P, De Brabandere S, Criel K, Verdonk R (2009) A long-term study of anterior cruciate ligament allograft reconstruction. Knee Surg Sports Traumatol Arthrosc 17:818–822CrossRefPubMedGoogle Scholar
  3. 3.
    Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45:596–606CrossRefPubMedGoogle Scholar
  4. 4.
    Bach BR Jr, Aadalen KJ, Dennis MG, Carreira DS, Bojchuk J, Hayden JK et al (2005) Primary anterior cruciate ligament reconstruction using fresh-frozen, nonirradiated patellar tendon allograft: minimum 2-year follow-up. Am J Sports Med 33:284–292CrossRefPubMedGoogle Scholar
  5. 5.
    Barber FA, Aziz-Jacobo J, Oro FB (2010) Anterior cruciate ligament reconstruction using patellar tendon allograft: an age-dependent outcome evaluation. Arthroscopy 26:488–493CrossRefPubMedGoogle Scholar
  6. 6.
    Barber FA, Cowden CH III, Sanders EJ (2014) Revision rates after anterior cruciate ligament reconstruction using bone-patellar tendon-bone allograft or autograft in a population 25 years old and younger. Arthroscopy 30:483–491CrossRefPubMedGoogle Scholar
  7. 7.
    Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27:1697–1705CrossRefPubMedGoogle Scholar
  8. 8.
    Barbour SA, King W (2003) The safe and effective use of allograft tissue—an update. Am J Sports Med 31:791–797CrossRefPubMedGoogle Scholar
  9. 9.
    Barker JU, Drakos MC, Maak TG, Warren RF, Williams RJ III, Allen AA (2010) Effect of graft selection on the incidence of postoperative infection in anterior cruciate ligament reconstruction. Am J Sports Med 38:281–286CrossRefPubMedGoogle Scholar
  10. 10.
    Barrett G, Stokes D, White M (2005) Anterior cruciate ligament reconstruction in patients older than 40 years: allograft versus autograft patellar tendon. Am J Sports Med 33:1505–1512CrossRefPubMedGoogle Scholar
  11. 11.
    Barrett GR, Luber K, Replogle WH, Manley JL (2010) Allograft anterior cruciate ligament reconstruction in the young, active patient: tegner activity level and failure rate. Arthroscopy 26:1593–1601CrossRefPubMedGoogle Scholar
  12. 12.
    Bechtold JE, Eastlund DT, Butts MK, Lagerborg DF, Kyle RF (1994) The effects of freeze-drying and ethylene oxide sterilization on the mechanical properties of human patellar tendon. Am J Sports Med 22:562–566CrossRefPubMedGoogle Scholar
  13. 13.
    Bedi A, Kawamura S, Ying L, Rodeo SA (2009) Differences in tendon graft healing between the intra-articular and extra-articular ends of a bone tunnel. HSS J 5:51–57CrossRefPubMedGoogle Scholar
  14. 14.
    Beynnon BD, Johnson RJ, Fleming BC, Peura GD, Renstrom PA, Nichols CE et al (1997) The effect of functional knee bracing on the anterior cruciate ligament in the weightbearing and nonweightbearing knee. Am J Sports Med 25:353–359CrossRefPubMedGoogle Scholar
  15. 15.
    Boniello MR, Schwingler PM, Bonner JM, Robinson SP, Cotter A, Bonner KF (2015) Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthroscopy 31:1084–1090CrossRefPubMedGoogle Scholar
  16. 16.
    Bottoni CR, Smith EL, Shaha J, Shaha SS, Raybin SG, Tokish JM et al (2015) Autograft versus allograft anterior cruciate ligament reconstruction: a prospective, randomized clinical study with a minimum 10-year follow-up. Am J Sports Med 43:2501–2509CrossRefPubMedGoogle Scholar
  17. 17.
    Brophy RH, Schmitz L, Wright RW, Dunn WR, Parker RD, Andrish JT et al (2012) Return to play and future ACL injury risk after ACL reconstruction in soccer athletes from the Multicenter Orthopaedic Outcomes Network (MOON) group. Am J Sports Med 40:2517–2522CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brophy RH, Wright RW, Huston LJ, Nwosu SK, Spindler KP (2015) Factors associated with infection following anterior cruciate ligament reconstruction. J Bone Jt Surg Am 97:450–454CrossRefGoogle Scholar
  19. 19.
    Carey JL, Dunn WR, Dahm DL, Zeger SL, Spindler KP (2009) A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J Bone Jt Surg Am 91:2242–2250CrossRefGoogle Scholar
  20. 20.
    Carey JL, Shea KG (2015) AAOS clinical practice guideline: management of anterior cruciate ligament injuries: evidence-based guideline. J Am Acad Orthop Surg 23:e6–e8CrossRefPubMedGoogle Scholar
  21. 21.
    Carter TR, Rabago MT (2016) Allograft anterior cruciate ligament reconstruction in patients younger than 25 years. J Knee Surg 29:322–328PubMedGoogle Scholar
  22. 22.
    Centeno JM, Woolf S, Reid JB III, Lubowitz JH (2007) Do anterior cruciate ligament allograft culture results correlate with clinical infections? Arthroscopy 23:1100–1103CrossRefPubMedGoogle Scholar
  23. 23.
    Centers for Disease Control and Prevention (CDC) (2001) Update: Unexplained deaths following knee surgery—Minnesota, 2001. MMWR Morb Mortal Wkly Rep 50:1080Google Scholar
  24. 24.
    Chang SK, Egami DK, Shaieb MD, Kan DM, Richardson AB (2003) Anterior cruciate ligament reconstruction: allograft versus autograft. Arthroscopy 19:453–462CrossRefPubMedGoogle Scholar
  25. 25.
    Chehab EL, Flik KR, Vidal AF, Levinson M, Gallo RA, Altchek DW et al (2011) Anterior cruciate ligament reconstruction using achilles tendon allograft: an assessment of outcome for patients age 30 years and older. HSSJ 7:44–51CrossRefGoogle Scholar
  26. 26.
    Chmielewski TL (2011) Asymmetrical lower extremity loading after ACL reconstruction: more than meets the eye. J Orthop Sports Phys Ther 41:374–376CrossRefPubMedGoogle Scholar
  27. 27.
    Crawford C, Kainer M, Jernigan D, Banerjee S, Friedman C, Ahmed F et al (2005) Investigation of postoperative allograft-associated infections in patients who underwent musculoskeletal allograft implantation. Clin Infect Dis 41:195–200CrossRefPubMedGoogle Scholar
  28. 28.
    Crawford DC, Hallvik SE, Petering RC, Quilici SM, Black LO, Lavigne SA et al (2013) Post-operative complications following primary ACL reconstruction using allogenic and autogenic soft tissue grafts: increased relative morbidity risk is associated with increased graft diameter. Knee 20:520–525CrossRefPubMedGoogle Scholar
  29. 29.
    Curran AR, Adams DJ, Gill JL, Steiner ME, Scheller AD (2004) The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts. Am J Sports Med 32:1131–1135CrossRefPubMedGoogle Scholar
  30. 30.
    Cvetanovich GL, Mascarenhas R, Saccomanno MF, Verma NN, Cole BJ, Bush-Joseph CA et al (2014) Hamstring autograft versus soft-tissue allograft in anterior cruciate ligament reconstruction: a systematic review and meta-analysis of randomized controlled trials. Arthroscopy 30:1616–1624CrossRefPubMedGoogle Scholar
  31. 31.
    Dai C, Wang F, Wang X, Wang R, Wang S, Tang S (2016) Arthroscopic single-bundle anterior cruciate ligament reconstruction with six-strand hamstring tendon allograft versus bone-patellar tendon-bone allograft. Knee Surg Sports Traumatol Arthrosc 24:2915–2922CrossRefPubMedGoogle Scholar
  32. 32.
    Dashe J, Parisien RL, Cusano A, Curry EJ, Bedi A, Li X (2016) Allograft tissue irradiation and failure rate after anterior cruciate ligament reconstruction: a systematic review. World J Orthop 7:392–400CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Di Matteo B, Loibl M, Andriolo L, Filardo G, Zellner J, Koch M et al (2016) Biologic agents for anterior cruciate ligament healing: a systematic review. World J Orthop 7:592–603CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Diaz-de-Rada P, Barriga A, Barroso JL, Garcia-Barrecheguren E, Alfonso M, Valenti JR (2003) Positive culture in allograft ACL-reconstruction: what to do? Knee Surg Sports Traumatol Arthrosc 11:219–222CrossRefPubMedGoogle Scholar
  35. 35.
    DiBartola AC, Everhart JS, Kaeding CC, Magnussen RA, Flanigan DC (2016) Maximum load to failure of high dose versus low dose gamma irradiation of anterior cruciate ligament allografts: a meta-analysis. Knee 23:755–762CrossRefPubMedGoogle Scholar
  36. 36.
    Edgar CM, Zimmer S, Kakar S, Jones H, Schepsis AA (2008) Prospective comparison of auto and allograft hamstring tendon constructs for ACL reconstruction. Clin Orthop Relat Res 466:2238–2246CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ekdahl M, Wang JH, Ronga M, Fu FH (2008) Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:935–947CrossRefPubMedGoogle Scholar
  38. 38.
    Ellis HB, Matheny LM, Briggs KK, Pennock AT, Steadman JR (2012) Outcomes and revision rate after bone-patellar tendon-bone allograft versus autograft anterior cruciate ligament reconstruction in patients aged 18 years or younger with closed physes. Arthroscopy 28:1819–1825CrossRefPubMedGoogle Scholar
  39. 39.
    Engelman GH, Carry PM, Hitt KG, Polousky JD, Vidal AF (2014) Comparison of allograft versus autograft anterior cruciate ligament reconstruction graft survival in an active adolescent cohort. Am J Sports Med 42:2311–2318CrossRefPubMedGoogle Scholar
  40. 40.
    Falconiero RP, DiStefano VJ, Cook TM (1998) Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans. Arthroscopy 14:197–205CrossRefPubMedGoogle Scholar
  41. 41.
    Feller J, Webster KE (2013) Return to sport following anterior cruciate ligament reconstruction. Int Orthop 37:285–290CrossRefPubMedGoogle Scholar
  42. 42.
    Fideler BM, Vangsness CT Jr, Lu B, Orlando C, Moore T (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23:643–646CrossRefPubMedGoogle Scholar
  43. 43.
    Foster TE, Wolfe BL, Ryan S, Silvestri L, Kaye EK (2010) Does the graft source really matter in the outcome of patients undergoing anterior cruciate ligament reconstruction? An evaluation of autograft versus allograft reconstruction results: a systematic review. Am J Sports Med 38:189–199CrossRefPubMedGoogle Scholar
  44. 44.
    Goddard M, Bowman N, Salmon LJ, Waller A, Roe JP, Pinczewski LA (2013) Endoscopic anterior cruciate ligament reconstruction in children using living donor hamstring tendon allografts. Am J Sports Med 41:567–574CrossRefPubMedGoogle Scholar
  45. 45.
    Gorschewsky O, Klakow A, Riechert K, Pitzl M, Becker R (2005) Clinical comparison of the Tutoplast allograft and autologous patellar tendon (bone-patellar tendon-bone) for the reconstruction of the anterior cruciate ligament: 2- and 6-year results. Am J Sports Med 33:1202–1209CrossRefPubMedGoogle Scholar
  46. 46.
    Grassi A, Nitri M, Moulton SG, Marcheggiani Muccioli GM, Bondi A, Romagnoli M et al (2017) Does the type of graft affect the outcome of revision anterior cruciate ligament reconstruction? a meta-analysis of 32 studies. Bone Jt J 99-B:714–723CrossRefGoogle Scholar
  47. 47.
    Greenberg DD, Robertson M, Vallurupalli S, White RA, Allen WC (2010) Allograft compared with autograft infection rates in primary anterior cruciate ligament reconstruction. J Bone Jt Surg Am 92:2402–2408CrossRefGoogle Scholar
  48. 48.
    Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA (2016) Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 50:804–808CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gulotta LV, Rodeo SA (2007) Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med 26:509–524CrossRefPubMedGoogle Scholar
  50. 50.
    Guo L, Yang L, Duan XJ, He R, Chen GX, Wang FY et al (2012) Anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft: comparison of autograft, fresh-frozen allograft, and gamma-irradiated allograft. Arthroscopy 28:211–217CrossRefPubMedGoogle Scholar
  51. 51.
    Harris NL, Indelicato PA, Bloomberg MS, Meister K, Wheeler DL (2002) Radiographic and histologic analysis of the tibial tunnel after allograft anterior cruciate ligament reconstruction in goats. Am J Sports Med 30:368–373CrossRefPubMedGoogle Scholar
  52. 52.
    Hofbauer M, Muller B, Murawski CD, van Eck CF, Fu FH (2014) The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc 22:979–986PubMedGoogle Scholar
  53. 53.
    Ibrahim T, Stafford H, Esler CNA, Power RA (2004) Cadaveric allograft microbiology. Int Orthop 28:315–318CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Indelicato PA, Ciccotti MG, Boyd J, Higgins LD, Shaffer BS, Vangsness CT Jr (2013) Aseptically processed and chemically sterilized BTB allografts for anterior cruciate ligament reconstruction: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 21:2107–2112CrossRefPubMedGoogle Scholar
  55. 55.
    Indelli PF, Dillingham MF, Fanton GS, Schurman DJ (2004) Anterior cruciate ligament reconstruction using cryopreserved allografts. Clin Orthop Relat Res 420:268–275CrossRefGoogle Scholar
  56. 56.
    Jackson DW, Corsetti J, Simon TM (1996) Biologic incorporation of allograft anterior cruciate ligament replacements. Clin Orthop Relat Res 324:126–133CrossRefGoogle Scholar
  57. 57.
    Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF et al (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21:176–185CrossRefPubMedGoogle Scholar
  58. 58.
    Joyce CD, Randall KL, Mariscalco MW, Magnussen RA, Flanigan DC (2016) Bone-patellar tendon-bone versus soft-tissue allograft for anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 32:394–402CrossRefPubMedGoogle Scholar
  59. 59.
    Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP (2015) Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med 43:1583–1590CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kainer MA, Linden JV, Whaley DN, Holmes HT, Jarvis WR, Jernigan DB et al (2004) Clostridium infections associated with musculoskeletal-tissue allografts. N Engl J Med 350:2564–2571CrossRefPubMedGoogle Scholar
  61. 61.
    Kane PW, Wascher J, Dodson CC, Hammoud S, Cohen SB, Ciccotti MG (2016) Anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft versus allograft in skeletally mature patients aged 25 years or younger. Knee Surg Sports Traumatol Arthrosc 24:3627–3633CrossRefPubMedGoogle Scholar
  62. 62.
    Kang HJ, Wang XJ, Wu CJ, Cao JH, Yu DH, Zheng ZM (2015) Single-bundle modified patellar tendon versus double-bundle tibialis anterior allograft ACL reconstruction: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 23:2244–2249CrossRefPubMedGoogle Scholar
  63. 63.
    Kartus J, Movin T, Karlsson J (2001) Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 17:971–980CrossRefPubMedGoogle Scholar
  64. 64.
    Katz LM, Battaglia TC, Patino P, Reichmann W, Hunter DJ, Richmond JC (2008) A retrospective comparison of the incidence of bacterial infection following anterior cruciate ligament reconstruction with autograft versus allograft. Arthroscopy 24:1330–1335CrossRefPubMedGoogle Scholar
  65. 65.
    Kay J, Memon M, Marx RG, Peterson D, Simunovic N, Ayeni OR (2018) Over 90% of children and adolescents return to sport after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 26:1019–1036CrossRefPubMedGoogle Scholar
  66. 66.
    Kraeutler MJ, Bravman JT, McCarty EC (2013) Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: a meta-analysis of 5182 patients. Am J Sports Med 41:2439–2448CrossRefPubMedGoogle Scholar
  67. 67.
    Krych AJ, Jackson JD, Hoskin TL, Dahm DL (2008) A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy 24:292–298CrossRefPubMedGoogle Scholar
  68. 68.
    Lamblin CJ, Waterman BR, Lubowitz JH (2013) Anterior cruciate ligament reconstruction with autografts compared with non-irradiated, non-chemically treated allografts. Arthroscopy 29:1113–1122CrossRefPubMedGoogle Scholar
  69. 69.
    Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR Jr (2017) What Factors Influence the Biomechanical Properties of Allograft Tissue for ACL Reconstruction? A Systematic Review. Clin Orthop Relat Res 475:2412–2426CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lawhorn KW, Howell SM, Traina SM, Gottlieb JE, Meade TD, Freedberg HI (2012) The effect of graft tissue on anterior cruciate ligament outcomes: a multicenter, prospective, randomized controlled trial comparing autograft hamstrings with fresh-frozen anterior tibialis allograft. Arthroscopy 28:1079–1086CrossRefPubMedGoogle Scholar
  71. 71.
    Lee JH, Bae DK, Song SJ, Cho SM, Yoon KH (2010) Comparison of clinical results and second-look arthroscopy findings after arthroscopic anterior cruciate ligament reconstruction using 3 different types of grafts. Arthroscopy 26:41–49CrossRefPubMedGoogle Scholar
  72. 72.
    Lenehan EA, Payne WB, Askam BM, Grana WA, Farrow LD (2015) Long-term outcomes of allograft reconstruction of the anterior cruciate ligament. Am J Orthop (Belle Mead NJ) 44:217–222Google Scholar
  73. 73.
    Li J, Wang J, Li Y, Shao D, You X, Shen Y (2015) A prospective randomized study of anterior cruciate ligament reconstruction with autograft, gamma-irradiated allograft, and hybrid graft. Arthroscopy 31:1296–1302CrossRefPubMedGoogle Scholar
  74. 74.
    Lording T, Steiner J, Hewison C, Neyret P, Lustig S (2017) Autograft superior to both irradiated and non-irradiated allograft for primary ACL reconstruction: a systematic review. J ISAKOS Jt Disord Orthop Sports Med 2:247–259CrossRefGoogle Scholar
  75. 75.
    Maletis GB, Chen J, Inacio MCS, Love RM, Funahashi TT (2017) Increased risk of revision after anterior cruciate ligament reconstruction with soft tissue allografts compared with autografts: graft processing and time make a difference. Am J Sports Med 45:1837–1844CrossRefPubMedGoogle Scholar
  76. 76.
    Maletis GB, Inacio MC, Desmond JL, Funahashi TT (2013) Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Jt J 95-B:623–628CrossRefGoogle Scholar
  77. 77.
    Maletis GB, Inacio MC, Funahashi TT (2013) Analysis of 16,192 anterior cruciate ligament reconstructions from a community-based registry. Am J Sports Med 41:2090–2098CrossRefPubMedGoogle Scholar
  78. 78.
    Maletis GB, Inacio MC, Reynolds S, Desmond JL, Maletis MM, Funahashi TT (2013) Incidence of postoperative anterior cruciate ligament reconstruction infections: graft choice makes a difference. Am J Sports Med 41:1780–1785CrossRefPubMedGoogle Scholar
  79. 79.
    Mardani-Kivi M, Karimi-Mobarakeh M, Keyhani S, Saheb-Ekhtiari K, Hashemi-Motlagh K, Sarvi A (2016) Hamstring tendon autograft versus fresh-frozen tibialis posterior allograft in primary arthroscopic anterior cruciate ligament reconstruction: a retrospective cohort study with three to six years follow-up. Int Orthop 40:1905–1911CrossRefPubMedGoogle Scholar
  80. 80.
    Mariscalco MW, Magnussen RA, Kaeding CC, Hewett TE, Flanigan DC (2014) Use of irradiated and non-irradiated allograft tissue in anterior cruciate ligament reconstruction surgery: a critical analysis review. JBJS Rev 2:2CrossRefGoogle Scholar
  81. 81.
    Mariscalco MW, Magnussen RA, Mehta D, Hewett TE, Flanigan DC, Kaeding CC (2014) Autograft versus nonirradiated allograft tissue for anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 42:492–499CrossRefPubMedGoogle Scholar
  82. 82.
    Marrale J, Morrissey MC, Haddad FS (2007) A literature review of autograft and allograft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 15:690–704CrossRefPubMedGoogle Scholar
  83. 83.
    Mascarenhas R, Erickson BJ, Sayegh ET, Verma NN, Cole BJ, Bush-Joseph C et al (2015) Is there a higher failure rate of allografts compared with autografts in anterior cruciate ligament reconstruction: a systematic review of overlapping meta-analyses. Arthroscopy 31:364–372CrossRefPubMedGoogle Scholar
  84. 84.
    Mascarenhas R, Tranovich M, Karpie JC, Irrgang JJ, Fu FH, Harner CD (2010) Patellar tendon anterior cruciate ligament reconstruction in the high-demand patient: evaluation of autograft versus allograft reconstruction. Arthroscopy 26:S58–S66CrossRefPubMedGoogle Scholar
  85. 85.
    McAllister DR, Joyce MJ, Mann BJ, Vangsness CT Jr (2007) Allograft update: the current status of tissue regulation, procurement, processing, and sterilization. Am J Sports Med 35:2148–2158CrossRefPubMedGoogle Scholar
  86. 86.
    McDevitt ER, Taylor DC, Miller MD, Gerber JP, Ziemke G, Hinkin D et al (2004) Functional bracing after anterior cruciate ligament reconstruction: a prospective, randomized, multicenter study. Am J Sports Med 32:1887–1892CrossRefPubMedGoogle Scholar
  87. 87.
    Melegati G, Tornese D, Bandi M, Volpi P, Schonhuber H, Denti M (2003) The role of the rehabilitation brace in restoring knee extension after anterior cruciate ligament reconstruction: a prospective controlled study. Knee Surg Sports Traumatol Arthrosc 11:322–326CrossRefPubMedGoogle Scholar
  88. 88.
    Muramatsu K, Hachiya Y, Izawa H (2008) Serial evaluation of human anterior cruciate ligament grafts by contrast-enhanced magnetic resonance imaging: comparison of allografts and autografts. Arthroscopy 24:1038–1044CrossRefPubMedGoogle Scholar
  89. 89.
    Myer GD, Schmitt LC, Brent JL, Ford KR, Barber Foss KD, Scherer BJ et al (2011) Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther 41:377–387CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Nakata K, Shino K, Horibe S, Tanaka Y, Toritsuka Y, Nakamura N et al (2008) Arthroscopic anterior cruciate ligament reconstruction using fresh-frozen bone plug-free allogeneic tendons: 10-year follow-up. Arthroscopy 24:285–291CrossRefPubMedGoogle Scholar
  91. 91.
    Niu Y, Duan G, Wang F, Tang S, Li Y, Lu J et al (2017) Better 4-year outcomes for anterior cruciate ligament reconstruction with double-layer versus single-layer bone-patellar tendon-bone allografts. Knee Surg Sports Traumatol Arthrosc 25:1443–1448CrossRefPubMedGoogle Scholar
  92. 92.
    Niu Y, Niu C, Wang X, Liu J, Cao P, Wang F et al (2016) Improved ACL reconstruction outcome using double-layer BPTB allograft compared to that using four-strand hamstring tendon allograft. Knee 23:1093–1097CrossRefPubMedGoogle Scholar
  93. 93.
    Noh JH, Yang BG, Yi SR, Roh YH, Lee JS (2013) Single-bundle anterior cruciate ligament reconstruction in active young men using bone-tendon achilles allograft versus free tendon achilles allograft. Arthroscopy 29:507–513CrossRefPubMedGoogle Scholar
  94. 94.
    Paolin A, Trojan D, Petit P, Coato P, Rigoli R (2017) Evaluation of allograft contamination and decontamination at the Treviso tissue bank foundation: a retrospective study of 11,129 tissues. PLoS One 12:e0173154CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Park SS, Dwyer T, Congiusta F, Whelan DB, Theodoropoulos J (2015) Analysis of irradiation on the clinical effectiveness of allogenic tissue when used for primary anterior cruciate ligament reconstruction. Am J Sports Med 43:226–235CrossRefPubMedGoogle Scholar
  96. 96.
    Patel R, Trampuz A (2004) Infections transmitted through musculoskeletal-tissue allografts. N Engl J Med 350:2544–2546CrossRefPubMedGoogle Scholar
  97. 97.
    Peterson RK, Shelton WR, Bomboy AL (2001) Allograft versus autograft patellar tendon anterior cruciate ligament reconstruction: a 5-year follow-up. Arthroscopy 17:9–13CrossRefPubMedGoogle Scholar
  98. 98.
    Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ et al (2005) Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy 21:774–785PubMedGoogle Scholar
  99. 99.
    Rappe M, Horodyski M, Meister K, Indelicato PA (2007) Nonirradiated versus irradiated Achilles allograft: in vivo failure comparison. Am J Sports Med 35:1653–1658CrossRefPubMedGoogle Scholar
  100. 100.
    Rihn JA, Irrgang JJ, Chhabra A, Fu FH, Harner CD (2006) Does irradiation affect the clinical outcome of patellar tendon allograft ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 14:885–896CrossRefPubMedGoogle Scholar
  101. 101.
    Roberson TA, Abildgaard JT, Wyland DJ, Siffri PC, Geary SP, Hawkins RJ et al (2017) “Proprietary processed” allografts: clinical outcomes and biomechanical properties in anterior cruciate ligament reconstruction. Am J Sports Med 45:3158–3167CrossRefPubMedGoogle Scholar
  102. 102.
    Rose MB, Domes C, Farooqi M, Crawford DC (2016) A prospective randomized comparison of two distinct allogenic tissue constructs for anterior cruciate ligament reconstruction. Knee 23:1112–1120CrossRefPubMedGoogle Scholar
  103. 103.
    Scheffler SU, Schmidt T, Gangey I, Dustmann M, Unterhauser F, Weiler A (2008) Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy 24:448–458CrossRefPubMedGoogle Scholar
  104. 104.
    Schmidt T, Hoburg A, Broziat C, Smith MD, Gohs U, Pruss A et al (2012) Sterilization with electron beam irradiation influences the biomechanical properties and the early remodeling of tendon allografts for reconstruction of the anterior cruciate ligament (ACL). Cell Tissue Bank 13:387–400CrossRefPubMedGoogle Scholar
  105. 105.
    Shah AA, McCulloch PC, Lowe WR (2010) Failure rate of Achilles tendon allograft in primary anterior cruciate ligament reconstruction. Arthroscopy 26:667–674CrossRefPubMedGoogle Scholar
  106. 106.
    Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K (1984) Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Jt Surg Br 66:672–681CrossRefGoogle Scholar
  107. 107.
    Shybut TB, Pahk B, Hall G, Meislin RJ, Rokito AS, Rosen J et al (2013) Functional outcomes of anterior cruciate ligament reconstruction with tibialis anterior allograft. Bull Hosp Jt Dis (2013) 71:138–143Google Scholar
  108. 108.
    Snow M, Campbell G, Adlington J, Stanish WD (2010) Two to five year results of primary ACL reconstruction using doubled tibialis anterior allograft. Knee Surg Sports Traumatol Arthrosc 18:1374–1378CrossRefPubMedGoogle Scholar
  109. 109.
    Sterett WI, Briggs KK, Farley T, Steadman JR (2006) Effect of functional bracing on knee injury in skiers with anterior cruciate ligament reconstruction: a prospective cohort study. Am J Sports Med 34:1581–1585CrossRefPubMedGoogle Scholar
  110. 110.
    Sun K, Tian S, Zhang J, Xia C, Zhang C, Yu T (2009) Anterior cruciate ligament reconstruction with BPTB autograft, irradiated versus non-irradiated allograft: a prospective randomized clinical study. Knee Surg Sports Traumatol Arthrosc 17:464–474CrossRefPubMedGoogle Scholar
  111. 111.
    Sun K, Zhang J, Wang Y, Xia C, Zhang C, Yu T et al (2011) Arthroscopic anterior cruciate ligament reconstruction with at least 2.5 years’ follow-up comparing hamstring tendon autograft and irradiated allograft. Arthroscopy 27:1195–1202CrossRefPubMedGoogle Scholar
  112. 112.
    Sun K, Zhang J, Wang Y, Xia C, Zhang C, Yu T et al (2011) Arthroscopic reconstruction of the anterior cruciate ligament with hamstring tendon autograft and fresh-frozen allograft: a prospective, randomized controlled study. Am J Sports Med 39:1430–1438CrossRefPubMedGoogle Scholar
  113. 113.
    Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49Google Scholar
  114. 114.
    Tejwani SG, Chen J, Funahashi TT, Love R, Maletis GB (2015) Revision risk after allograft anterior cruciate ligament reconstruction: association with graft processing techniques, patient characteristics, and graft type. Am J Sports Med 43:2696–2705CrossRefPubMedGoogle Scholar
  115. 115.
    Tian S, Wang B, Liu L, Wang Y, Ha C, Li Q et al (2016) Irradiated Hamstring tendon allograft versus autograft for anatomic double-bundle anterior cruciate ligament reconstruction: midterm clinical outcomes. Am J Sports Med 44:2579–2588CrossRefPubMedGoogle Scholar
  116. 116.
    Traore A, Yombi JC, Tribak K, Cornu O (2013) Risk of virus transmission through femoral head allografts: a Belgian appraisal. J Clin Orthop Trauma 4:119–122CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    van Eck CF, Schkrohowsky JG, Working ZM, Irrgang JJ, Fu FH (2012) Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med 40:800–807CrossRefPubMedGoogle Scholar
  118. 118.
    van Grinsven S, van Cingel RE, Holla CJ, van Loon CJ (2010) Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18:1128–1144CrossRefPubMedGoogle Scholar
  119. 119.
    Vangsness CT Jr, Garcia IA, Mills CR, Kainer MA, Roberts MR, Moore TM (2003) Allograft transplantation in the knee: tissue regulation, procurement, processing, and sterilization. Am J Sports Med 31:474–481CrossRefPubMedGoogle Scholar
  120. 120.
    Vertullo CJ, Quick M, Jones A, Grayson JE (2012) A surgical technique using presoaked vancomycin hamstring grafts to decrease the risk of infection after anterior cruciate ligament reconstruction. Arthroscopy 28:337–342CrossRefPubMedGoogle Scholar
  121. 121.
    Vyas D, Rabuck SJ, Harner CD (2012) Allograft anterior cruciate ligament reconstruction: indications, techniques, and outcomes. J Orthop Sports Phys Ther 42:196–207CrossRefPubMedGoogle Scholar
  122. 122.
    Wang HD, Zhu YB, Wang TR, Zhang WF, Zhang YZ (2018) Irradiated allograft versus autograft for anterior cruciate ligament reconstruction: a meta-analysis and systematic review of prospective studies. Int J Surg 49:45–55CrossRefPubMedGoogle Scholar
  123. 123.
    Wasserstein D, Khoshbin A, Dwyer T, Chahal J, Gandhi R, Mahomed N et al (2013) Risk factors for recurrent anterior cruciate ligament reconstruction: a population study in Ontario, Canada, with 5-year follow-up. Am J Sports Med 41:2099–2107CrossRefPubMedGoogle Scholar
  124. 124.
    Wasserstein D, Sheth U, Cabrera A, Spindler KP (2015) A systematic review of failed anterior cruciate ligament reconstruction with autograft compared with allograft in young patients. Sports Health 7:207–216CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Wei J, Yang HB, Qin JB, Yang TB (2015) A meta-analysis of anterior cruciate ligament reconstruction with autograft compared with nonirradiated allograft. Knee 22:372–379CrossRefPubMedGoogle Scholar
  126. 126.
    Wright RW, Fetzer GB (2007) Bracing after ACL reconstruction: a systematic review. Clin Orthop Relat Res 455:162–168CrossRefPubMedGoogle Scholar
  127. 127.
    Yao LW, Wang Q, Zhang L, Zhang C, Zhang B, Zhang YJ et al (2015) Patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Eur J Orthop Surg Traumatol 25:355–365CrossRefPubMedGoogle Scholar
  128. 128.
    Yoo SH, Song EK, Shin YR, Kim SK, Seon JK (2017) Comparison of clinical outcomes and second-look arthroscopic findings after ACL reconstruction using a hamstring autograft or a tibialis allograft. Knee Surg Sports Traumatol Arthrosc 25:1290–1297CrossRefPubMedGoogle Scholar
  129. 129.
    Yu A, Prentice HA, Burfeind WE, Funahashi T, Maletis GB (2018) Risk of infection after allograft anterior cruciate ligament reconstruction: are nonprocessed allografts more likely to get infected? A cohort study of over 10,000 allografts. Am J Sports Med 46:846–851CrossRefPubMedGoogle Scholar
  130. 130.
    Zeng C, Gao SG, Li H, Yang T, Luo W, Li YS et al (2016) Autograft versus allograft in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews. Arthroscopy 32:153–163.e118CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019

Authors and Affiliations

  • Christophe Hulet
    • 1
  • Bertrand Sonnery-Cottet
    • 2
  • Ciara Stevenson
    • 3
  • Kristian Samuelsson
    • 4
    • 5
  • Lior Laver
    • 3
  • Urszula Zdanowicz
    • 6
    • 7
  • Sjoerd Stufkens
    • 8
  • Jonathan Curado
    • 1
  • Peter Verdonk
    • 9
  • Tim Spalding
    • 3
    Email author
  1. 1.Department of Orthopedics and TraumatologyCaen University HospitalCaenFrance
  2. 2.Centre Orthopédique Santy, FIFA Medical Centre of Excellence, Groupe Ramsay-Générale de SantéHôpital Privé Jean MermozLyonFrance
  3. 3.University Hospital Coventry and Warwickshire NHS TrustCoventryUK
  4. 4.Sahlgrenska University HospitalMölndalSweden
  5. 5.Institute of Clinical Sciences, The Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  6. 6.Carolina Medical CenterWarsawPoland
  7. 7.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA
  8. 8.Academic Medical Center AmsterdamAmsterdamThe Netherlands
  9. 9.Antwerp Orthopedic CenterMonica HospitalsAntwerpBelgium

Personalised recommendations