Skip to main content

Advertisement

Log in

Tibial slope and medial meniscectomy significantly influence short-term knee laxity following ACL reconstruction

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To determine demographic, anatomic, and surgical factors associated with static and dynamic Anterior Tibial Translation (ATT) following ACL reconstruction. The hypothesis was that both static and dynamic ATT would be greater in knees with high tibial slope or that required meniscectomy.

Methods

The authors prospectively enrolled 280 consecutive patients that had primary ACL reconstruction using hamstring autografts at one center for which preoperative tear type, meniscal tears, and medial tibial slope were documented. A total of 137 were excluded due to concomitant extra-articular tenodesis or surgical antecedents on either knee, and 18 were lost to follow-up, leaving 125 that were evaluated at a minimum of 6 months including: static ATT on monopodal weight-bearing radiographs, and dynamic ATT on differential stress radiographs using the Telos™ device.

Results

Both postoperative static and dynamic ATT were strongly associated with preoperative static and dynamic ATT (respectively, β = 0.068 and β = 0.50, p < 0.001). Multivariable regression confirmed that postoperative static ATT increased with tibial slope (β = 0.24; CI 0.01–0.47; p = 0.042) and in knees that had partial medial meniscectomy (β = 2.05; CI 0.25–3.84; p = 0.025), while dynamic ATT decreased with age (β = − 0.11; CI − 0.16 to − 0.05; p < 0.001), and increased with tibial slope (β = 0.27; CI 0.04–0.49; p = 0.019) and in knees that had partial medial meniscectomy (β = 2.20; CI 0.35–4.05; p = 0.019).

Conclusion

Both static and dynamic ATT following ACL reconstruction increased with tibial slope and in knees that had partial medial meniscectomy. These findings could help surgeons tailor their techniques and ‘à la carte’ rehabilitation protocols, by preserving the menisci and sometimes delaying full weight-bearing and return to sport in patients at risk, and hence improve outcomes and prevent graft failures.

Study design

Cohort study.

Level of evidence

V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmed I, Salmon L, Roe J, Pinczewski L (2017) The long-term clinical and radiological outcomes in patients who suffer recurrent injuries to the anterior cruciate ligament after reconstruction. Bone Joint J 99(3):337–343

    PubMed  Google Scholar 

  2. Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH (2011) Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med 39(10):2187–2193

    PubMed  Google Scholar 

  3. Ahn JH, Lee SH (2016) Risk factors for knee instability after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 24(9):2936–2942

    PubMed  Google Scholar 

  4. Austin PC, Steyerberg EW (2015) The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 68(6):627–636

    PubMed  Google Scholar 

  5. Beldame J, Mouchel S, Bertiaux S, Adam JM, Mouilhade F, Roussignol X, Dujardin F (2012) Anterior knee laxity measurement: comparison of passive stress radiographs Telos((R)) and “Lerat”, and GNRB((R)) arthrometer. Orthop Traumatol Surg Res 98(7):744–750

    CAS  PubMed  Google Scholar 

  6. Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL (2015) Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 43(10):2510–2514

    PubMed  Google Scholar 

  7. Colombet P, Graveleau N, Jambou S (2016) Incorporation of hamstring grafts within the tibial tunnel after anterior cruciate ligament reconstruction: magnetic resonance imaging of suspensory fixation versus interference screws. Am J Sports Med 44(11):2838–2845

    PubMed  Google Scholar 

  8. Cristiani R, Forssblad M, Engstrom B, Edman G, Stalman A (2018) Risk factors for abnormal anteroposterior knee laxity after primary anterior cruciate ligament reconstruction. Arthroscopy 34(8):2478–2484

    PubMed  Google Scholar 

  9. Cristiani R, Ronnblad E, Engstrom B, Forssblad M, Stalman A (2018) Medial meniscus resection increases and medial meniscus repair preserves anterior knee laxity: a cohort study of 4497 patients with primary anterior cruciate ligament reconstruction. Am J Sports Med 46(2):357–362

    PubMed  Google Scholar 

  10. Dargel J, Gotter M, Mader K, Pennig D, Koebke J, Schmidt-Wiethoff R (2007) Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strategies Trauma Limb Reconstr 2(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dejour D, La Barbera G, Pasqualotto S, Valoroso M, Nover L, Reynolds R, Saffarini M (2017) Sagittal plane corrections around the knee. J Knee Surg 30(8):736–745

    PubMed  Google Scholar 

  12. Dejour D, Ntagiopoulos PG, Saggin PR, Panisset JC (2013) The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29(3):491–499

    PubMed  Google Scholar 

  13. Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey G (2018) Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5180-3

    Article  PubMed  Google Scholar 

  14. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23(10):2846–2852

    PubMed  Google Scholar 

  15. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76(5):745–749

    CAS  PubMed  Google Scholar 

  16. Dejour H, Walch G, Neyret P, Adeleine P (1988) [Results of surgically treated chronic anterior laxities. Apropos of 251 cases reviewed with a minimum follow-up of 3 years]. Rev Chir Orthop Reparatrice Appar Mot 74(7):622–636

    CAS  PubMed  Google Scholar 

  17. Fauno P, Rahr-Wagner L, Lind M (2014) Risk for revision after anterior cruciate ligament reconstruction is higher among adolescents: results from the danish registry of knee ligament reconstruction. Orthop J Sports Med 2(10):2325967114552405

    PubMed  PubMed Central  Google Scholar 

  18. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21(1):134–145

    PubMed  Google Scholar 

  19. Forkel P, von Deimling C, Lacheta L, Imhoff FB, Foehr P, Willinger L, Dyrna F, Petersen W, Imhoff AB, Burgkart R (2018) Repair of the lateral posterior meniscal root improves stability in an ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc 26(8):2302–2309

    PubMed  Google Scholar 

  20. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382

    PubMed  Google Scholar 

  21. Gwinner C, Weiler A, Roider M, Schaefer FM, Jung TM (2017) Tibial slope strongly influences knee stability after posterior cruciate ligament reconstruction: a prospective 5- to 15-year follow-up. Am J Sports Med 45(2):355–361

    PubMed  Google Scholar 

  22. Kartus JT, Russell VJ, Salmon LJ, Magnusson LC, Brandsson S, Pehrsson NG, Pinczewski LA (2002) Concomitant partial meniscectomy worsens outcome after arthroscopic anterior cruciate ligament reconstruction. Acta Orthop Scand 73(2):179–185

    PubMed  Google Scholar 

  23. Kocher MS, Steadman JR, Briggs K, Zurakowski D, Sterett WI, Hawkins RJ (2002) Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction. J Bone Joint Surg Am 84(9):1560–1572

    PubMed  Google Scholar 

  24. Kopf S, Kauert R, Halfpaap J, Jung T, Becker R (2012) A new quantitative method for pivot shift grading. Knee Surg Sports Traumatol Arthrosc 20(4):718–723

    CAS  PubMed  Google Scholar 

  25. Laboute E, James-Belin E, Puig PL, Trouve P, Verhaeghe E (2018) Graft failure is more frequent after hamstring than patellar tendon autograft. Knee Surg Sports Traumatol Arthrosc 12:3537–3546

    Google Scholar 

  26. Li Y, Hong L, Feng H, Wang Q, Zhang H, Song G (2014) Are failures of anterior cruciate ligament reconstruction associated with steep posterior tibial slopes? A case control study. Chin Med J (Engl) 127(14):2649–2653

    Google Scholar 

  27. Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G, Chen X, Zhuo H (2014) Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med 42(4):927–933

    PubMed  Google Scholar 

  28. Liechti DJ, Chahla J, Dean CS, Mitchell JJ, Slette E, Menge TJ, LaPrade RF (2016) Outcomes and risk factors of rerevision anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 32(10):2151–2159

    PubMed  Google Scholar 

  29. Lorbach O, Kieb M, Herbort M, Weyers I, Raschke M, Engelhardt M (2015) The influence of the medial meniscus in different conditions on anterior tibial translation in the anterior cruciate deficient knee. Int Orthop 39(4):681–687

    PubMed  Google Scholar 

  30. Lustig S, Scholes CJ, Leo SP, Coolican M, Parker DA (2013) Influence of soft tissues on the proximal bony tibial slope measured with two-dimensional MRI. Knee Surg Sports Traumatol Arthrosc 21(2):372–379

    PubMed  Google Scholar 

  31. Magnussen RA, Duthon V, Servien E, Neyret P (2013) Anterior cruciate ligament reconstruction and osteoarthritis: evidence from long-term follow-up and potential solutions. Cartilage 4(3 Suppl):22 s–26 s

    Google Scholar 

  32. Marouane H, Shirazi-Adl A, Adouni M, Hashemi J (2014) Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. J Biomech 47(6):1353–1359

    CAS  PubMed  Google Scholar 

  33. Mok YR, Wong KL, Panjwani T, Chan CX, Toh SJ, Krishna L (2018) Anterior cruciate ligament reconstruction performed within 12 months of the index injury is associated with a lower rate of medial meniscus tears. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5027-y

    Article  PubMed  Google Scholar 

  34. Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y, Lopomo N, Samuelsson K, Irrgang JJ (2016) The influence of meniscal and anterolateral capsular injury on knee laxity in patients with anterior cruciate ligament injuries. Am J Sports Med 44(12):3126–3131

    PubMed  Google Scholar 

  35. Nagai K, Tashiro Y, Herbst E, Gale T, Wang JH, Irrgang JJ, Anderst W, Fu FH (2018) Steeper posterior tibial slope correlates with greater tibial tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:3417–3723

    Google Scholar 

  36. Panisset JC, Ntagiopoulos PG, Saggin PR, Dejour D (2012) A comparison of Telos stress radiography versus Rolimeter in the diagnosis of different patterns of anterior cruciate ligament tears. Orthop Traumatol Surg Res 98(7):751–758

    PubMed  Google Scholar 

  37. Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S (2015) The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc 23(10):2967–2973

    CAS  PubMed  Google Scholar 

  38. Rochcongar G, Cucurulo T, Ameline T, Potel JF, Dalmay F, Pujol N, Salle de Chou E, Lutz C, Ehkirch FP, Le Henaff G, Laporte C, Seil R, Gunepin FX, Sonnery-Cottet B (2015) Meniscal survival rate after anterior cruciate ligament reconstruction. Orthop Traumatol Surg Res 101(8 Suppl):S323–S326

    CAS  PubMed  Google Scholar 

  39. Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46(3):531–543

    PubMed  Google Scholar 

  40. Salmon LJ, Refshauge KM, Russell VJ, Roe JP, Linklater J, Pinczewski LA (2006) Gender differences in outcome after anterior cruciate ligament reconstruction with hamstring tendon autograft. Am J Sports Med 34(4):621–629

    PubMed  Google Scholar 

  41. Samitier G, Marcano AI, Alentorn-Geli E, Cugat R, Farmer KW, Moser MW (2015) Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg 3(4):220–240

    PubMed  PubMed Central  Google Scholar 

  42. Schatka I, Weiler A, Jung TM, Walter TC, Gwinner C (2018) High tibial slope correlates with increased posterior tibial translation in healthy knees. Knee Surg Sports Traumatol Arthrosc 26(9):2697–2703

    PubMed  Google Scholar 

  43. Sernert N, Kartus J, Kohler K, Ejerhed L, Brandsson S, Karlsson J (2002) Comparison of functional outcome after anterior cruciate ligament reconstruction resulting in low, normal and increased laxity. Scand J Med Sci Sports 12(1):47–53

    PubMed  Google Scholar 

  44. Shelbourne KD, Urch SE (2000) Primary anterior cruciate ligament reconstruction using the contralateral autogenous patellar tendon. Am J Sports Med 28(5):651–658

    CAS  PubMed  Google Scholar 

  45. Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC, Lowe WR (2015) Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 43(4):905–911

    PubMed  Google Scholar 

  46. Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard JM, Freychet B, Clechet J, Chambat P (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42(8):1873–1880

    PubMed  Google Scholar 

  47. Stephen JM, Halewood C, Kittl C, Bollen SR, Williams A, Amis AA (2016) Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med 44(2):400–408

    PubMed  Google Scholar 

  48. Tagesson S, Oberg B, Kvist J (2015) Static and dynamic tibial translation before, 5 weeks after, and 5 years after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23(12):3691–3697

    PubMed  Google Scholar 

  49. Tanaka T, Hoshino Y, Miyaji N, Ibaragi K, Nishida K, Nishizawa Y, Araki D, Kanzaki N, Matsushita T, Kuroda R (2018) The diagnostic reliability of the quantitative pivot-shift evaluation using an electromagnetic measurement system for anterior cruciate ligament deficiency was superior to those of the accelerometer and iPad image analysis. Knee Surg Sports Traumatol Arthrosc 26(9):2835–2840

    PubMed  Google Scholar 

  50. Thaunat M, Jan N, Fayard JM, Kajetanek C, Murphy CG, Pupim B, Gardon R, Sonnery-Cottet B (2016) Repair of meniscal ramp lesions through a posteromedial portal during anterior cruciate ligament reconstruction: outcome study with a minimum 2-year follow-up. Arthroscopy 32(11):2269–2277

    PubMed  Google Scholar 

  51. Trojani C, Sane JC, Coste JS, Boileau P (2009) Four-strand hamstring tendon autograft for ACL reconstruction in patients aged 50 years or older. Orthop Traumatol Surg Res 95(1):22–27

    CAS  PubMed  Google Scholar 

  52. Trojani C, Sbihi A, Djian P, Potel JF, Hulet C, Jouve F, Bussiere C, Ehkirch FP, Burdin G, Dubrana F, Beaufils P, Franceschi JP, Chassaing V, Colombet P, Neyret P (2011) Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc 19(2):196–201

    PubMed  Google Scholar 

  53. Ueki H, Nakagawa Y, Ohara T, Watanabe T, Horie M, Katagiri H, Otabe K, Katagiri K, Hiyama K, Katakura M, Hoshino T, Inomata K, Araya N, Sekiya I, Muneta T, Koga H (2018) Risk factors for residual pivot shift after anterior cruciate ligament reconstruction: data from the MAKS group. Knee Surg Sports Traumatol Arthrosc 26:3724–3730

    PubMed  Google Scholar 

  54. Waiwaiole A, Gurbani A, Motamedi K, Seeger L, Sim MS, Nwajuaku P, Hame SL (2016) Relationship of ACL injury and posterior tibial slope with patient age, sex, and race. Orthop J Sports Med 4(11):2325967116672852

    PubMed  PubMed Central  Google Scholar 

  55. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41(12):2800–2804

    PubMed  Google Scholar 

  56. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44(7):1861–1876

    PubMed  PubMed Central  Google Scholar 

  57. Wu WH, Hackett T, Richmond JC (2002) Effects of meniscal and articular surface status on knee stability, function, and symptoms after anterior cruciate ligament reconstruction: a long-term prospective study. Am J Sports Med 30(6):845–850

    PubMed  Google Scholar 

  58. Zaffagnini S, Signorelli C, Bonanzinga T, Grassi A, Galan H, Akkawi I, Bragonzoni L, Cataldi F, Marcacci M (2016) Does meniscus removal affect ACL-deficient knee laxity? An in vivo study. Knee Surg Sports Traumatol Arthrosc 24(11):3599–3604

    CAS  PubMed  Google Scholar 

  59. Zeng C, Yang T, Wu S, Gao SG, Li H, Deng ZH, Zhang Y, Lei GH (2016) Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sports Traumatol Arthrosc 24(3):830–837

    PubMed  Google Scholar 

  60. Zult T, Gokeler A, van Raay J, Brouwer RW, Zijdewind I, Farthing JP, Hortobagyi T (2018) Cross-education does not improve early and late-phase rehabilitation outcomes after ACL reconstruction: a randomized controlled clinical trial. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-5116-y

    Article  PubMed  Google Scholar 

Download references

Funding

No external funding was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Saffarini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of our institutional research committee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejour, D., Pungitore, M., Valluy, J. et al. Tibial slope and medial meniscectomy significantly influence short-term knee laxity following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 27, 3481–3489 (2019). https://doi.org/10.1007/s00167-019-05435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-019-05435-0

Keywords

Navigation